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Abstract

In this work, we address a challenge in video inpainting:
reconstructing occluded regions in dynamic, real-world sce-
narios. Motivated by the need for continuous human motion
monitoring in healthcare settings, where facial features are
frequently obscured, we propose a diffusion-based video-
level inpainting model, DiffMVR. Our approach introduces
a dynamic dual-guided image prompting system, leveraging
adaptive reference frames to guide the inpainting process.
This enables the model to capture both fine-grained details
and smooth transitions between video frames, offering pre-
cise control over inpainting direction and significantly im-
proving restoration accuracy in challenging, dynamic envi-
ronments. DiffMVR represents a significant advancement in
the field of diffusion-based inpainting, with practical implica-
tions for real-time applications in various dynamic settings.

1. Introduction

The rise of diffusion models has revolutionized computer
vision, driving advances in image editing, super-resolution,
object removal, and restoration. Diffusion-based inpainting,
in particular, has seen wide application across fields. In
medical imaging, these models aid in anomaly detection by
restoring diseased regions to a healthy state for compara-
tive analysis [27]. In autonomous driving, they reconstruct
occluded information like road signs [14], while in advertis-

ing, they create immersive VR scenes for product promotion
[1]. Similarly, for privacy preservation, they assist in the
removal of sensitive visual information, such as faces or per-
sonal details in shared data. In healthcare, real-time facial
action monitoring is crucial for accurate pain assessments
[5]. Despite this growing demand for inpainting, most state-
of-the-art models are frame-based, achieving high-quality
restoration in static images but failing to capture the dynamic
essentials for continuous video tasks. As a result, there is
a clear need for video-level diffusion models capable of
addressing these limitations.

While image-based inpainting methods excel at restoring
missing regions in static frames, these models are inher-
ently limited to static 2D content. Foundational models
like Denoising Diffusion Probabilistic Models (DDPM) [7]
and variants such as Denoising Diffusion Implicit Models
(DDIM) [21], introduce robust frameworks to iteratively
denoise and restore image content with impressive quality.
Other approaches, like Vector Quantized Variational AutoEn-
coder [18], enable high-resolution generation by learning
quantized embeddings, yet are restricted to single-frame syn-
thesis. Partial convolution inpainting [13] addresses irregular
masks by conditioning convolutional filters on valid pixels
alone, reducing artifacts in static inpainting tasks. Although
these models achieve realistic object replacement and seam-
less integration within static frames, they lack the temporal
coherence required for video-level tasks. This creates an
opportunity to extend diffusion-based inpainting methods to
handle sequential frames in videos, requiring new strategies
that address both spatial and temporal aspects.



Building on image-based models, recent advancements
in video-level inpainting have targeted the reconstruction of
missing or occluded regions in sequences-challenges that 2D
image inpainting alone cannot fully overcome. Advances
in deep learning have driven substantial progress in video
inpainting. For example, Ouyang et al. [15] utilize the con-
volutional neural networks for video inpainting, preserving
high-frequency details. Further advancements, such as the
First Frame Filling video inpainting model [9], leverage dif-
fusion models to achieve accurate object removal, even with
large masks. More recent models, including the Any-length
video inpainting model [28] and MotionAura [22], introduce
diffusion-based video inpainting frameworks that support
various video lengths and inpainting tasks. However, exist-
ing models often struggle to accurately reconstruct subtle
human motions across frames.

Furthermore, most existing methods primarily concen-
trate on removing objects from videos, rather than replacing
them, especially with precise, detailed replacements. More-
over, to the best of our knowledge, no prior work focuses
on dual-image-guided video inpainting. This approach is
crucial for tasks such as restoring facial movements, where
both removal and accurate restoration are essential.

In this paper, we present DiffMVR, a novel diffusion-
based framework for dynamic, pairwise image-guided video
inpainting. Our approach introduces two adaptive guiding
images to steer inpainting precisely across detailed and com-
plex video sequences.

To enhance the inpainting process for object obscuration
removal and restoration, DiffMVR automatically generates
two guidance images for each video frame with occlusions:
a symmetric image and a past unobstructed frame. The
symmetric image, created by mirroring the visible half of
the frame along an axis of symmetry, provides structural
guidance. The past unobstructed frame is identified by a
fine-tuned YOLOv8 model, which searches for the most
recent fully visible object in previous frames. These frames
are processed by separate CLIP models to extract key-value
pairs. The current masked frame is then encoded into a
latent space by a VAE, where random noise is added to
serve as a query. This query interacts with the key-value
pairs from the guidance images to generate dual attention
scores that are weighted and fused. The U-Net uses this
combined attention, alongside standard diffusion inputs, to
iteratively denoise and recover the clean latent vector, which
the VAE finally decodes. By merging the effects of these two
guidance images within the U-Net’s architecture, DiffMVR
effectively integrates spatial details and temporal dynamics,
a key innovation that sets our technique apart from prior
video inpainting methods.

Building on this foundation, we introduce a motion loss
term to further enhance temporal consistency across consecu-
tive frames during the denoising process. This non-separable

frame loss function ensures continuity between adjacent
noisy representations of video frames, tightly linking each
frame to its predecessors and successors, thereby creating
a continuous and coherent video stream. Unlike traditional
image-level denoising methods that treat each frame in iso-
lation, this approach ensures a unified sequence with seam-
lessly integrated spatial and temporal elements. This not
only preserves the fluidity and natural progression of actions
but also faithfully reconstructs the video to authentically
represent the original scene’s dynamics and aesthetics.

The contributions of our approach are fivefold. (1) It
proficiently captures intricate motions, such as fine facial de-
tails and nuanced dynamic content, addressing long-standing
challenges in video inpainting. (2) Instead of using a static
prompt, our framework dynamically adjusts two guiding im-
ages per frame by automatically selecting an unobstructed
reference from previous frames and generating a symmetric
version of the current frame. This real-time, adaptive strat-
egy substantially enhances inpainting accuracy and temporal
coherence, even in demanding scenarios. (3) We propose
a novel architecture that combines structural and temporal
guidance based on their relevance. Our framework processes
the symmetric frame and past unobstructed frame in par-
allel attention pipelines, intelligently fusing their attention
scores within the U-Net structure to provide comprehen-
sive spatio-temporal guidance. (4) We introduce a hybrid
loss function nested within the diffusion process, utilizing
U-Net’s unique layered structure to synergistically merge
denoising and motion-consistency terms. This innovation
allows for effective feature extraction from both present and
neighboring frames, enhancing the U-Net’s ability to dynam-
ically synthesize missing content. Our method harnesses
the power of diffusion for progressive frame restoration and
optimizes the interaction between structural and temporal
data, setting a new standard for precision in video inpainting.
(5) Through quantitative and qualitative comparisons, we
demonstrate that DiffMVR consistently outperforms state-of-
the-art inpainting models. This work paves the way for more
robust and reliable AI-driven video inpainting, improving
decision-making in real-world scenarios.

Upon acceptance of the paper, we will open source the
code, but not the IRB-approved dataset.

2. Related Work
Images are a crucial medium for information dissemina-
tion, but they are often susceptible to noise, damage, and
interference, which can impede data analysis and knowl-
edge extraction. To restore damaged images and design
images according to human intent, various image inpainting
approaches have emerged in recent years.

Generative Adversarial Networks (GANs) [4] represent
a breakthrough in image editing, offering the ability to gen-
erate high-quality, realistic images and supporting unsuper-



vised learning. However, despite their strengths, GANs face
significant challenges, including training instability and high
demand for large datasets, which limits their utility in do-
mains such as historical image restoration, where data is
scarce. Following the rise of GANs, a patch-based method
[30] was developed to synthesize textures from undamaged
regions. While effective for simpler tasks like background
subtraction, patch-based models struggle with larger miss-
ing regions and maintaining global coherence in complex
scenes.

To mitigate some of these limitations, Pathak et al. [16]
introduce the encoder-decoder structure, marking a signifi-
cant step forward by offering a more stable approach to fill
in missing regions. More recently, diffusion-based models
such as the DDPM [7] and the DDIM [21] address the short-
comings of GANs. These models resolve issues like mode
collapse and offer greater flexibility in handling complex
distributions. By employing iterative noise addition and re-
moval processes, diffusion models can generate high-quality
inpainted images with enhanced stability and consistency.

Initially, diffusion models face challenges in learning ef-
fectively from unmasked surrounding pixels [20]. To tackle
this constraint, text-guided models [19] emerge, which allow
for more precise user-guided edits by incorporating prompts.
These advancements have expanded the capabilities of image
inpainting models, enabling them to handle more complex
tasks, such as producing high-quality results in difficult sce-
narios and allowing for exact, user-directed modifications.

As the field of image inpainting has matured, extending
these techniques to videos has become a natural progression,
driven by applications in fields such as remote sensing, medi-
cal diagnosis, and traffic video recovery. Video inpainting in-
troduces unique challenges, including maintaining temporal
coherence across frames and handling motion complexities.
Early methods, such as those developed by Li et al. [12],
employ flow-based techniques and deformable convolution
to propagate features and enhance temporal consistency in
inpainted video sequences. However, these models are often
bounded by their reliance on intermediate flow estimation
steps, which can introduce errors that propagate through
frames. DNN-based inpaint models, such as Copy-and-paste
network [10] and the context-aggregated network [11], ad-
dress context restoration through a copy-and-paste approach,
aggregating reference frames effectively. More recently, a
diffusion-based video inpainting model, AVID [28], focuses
on object removal guided by consistent text prompts. While
AVID and other diffusion-based models excel at eliminating
unwanted objects and imperfections, they encounter chal-
lenges in recapturing fine details and seamlessly blending
inpainted areas with surrounding regions, particularly in
highly dynamic videos.

Figure 1. DiffMVR Model Pipeline.

Our proposed methodology tackles these combined chal-
lenges through an innovative inpainting pipeline that not
only preserves temporal consistency but also thrives in de-
picting transient features and maintaining structural realism
in dynamic areas, such as micro-facial expressions. Utiliz-
ing a real-time adaptive guidance framework, our approach
dynamically selects and refines guidance images throughout
the video sequence, allowing for precise restoration of fine-
grained details while preserving both temporal coherence
and structural integrity. This evolving dual-guidance design
marks a substantial advancement over existing models, deliv-
ering more realistic and seamless inpainting even in complex,
rapidly changing video scenarios.

3. Methods
3.1. Model Pipeline

In this section, we establish an automated, multi-image-
guided, video-level diffusion-based inpainting pipeline,
specifically designed for dynamic video restoration. As
illustrated in Figure 1, the pipeline consists of four intercon-
nected modules.

The first module Mod1, Video Preprocessing, detects



and isolates the primary object in each frame using a fine-
tuned YOLO model, ensuring that the inpainting process
focuses accurately on regions of interest. This module pre-
pares the input frames by resizing and aligning them for
consistent processing. Additionally, we employ a fine-tuned
YOLOv8-based model to detect bounding boxes or a segmen-
tation model to identify irregular-shaped occlusions within
the object.

The second module, Mod2, Visual Encoding, indepen-
dently encodes both the frame to be inpainted and its guid-
ance images. The original video frame is processed through
a VAE Encoder, which introduces noise to produce a latent
representation as input for the diffusion process. Simul-
taneously, each guidance image, providing structural and
temporal cues, is encoded by a CLIP Encoder to generate
key-value pairs that facilitate subsequent attention mecha-
nisms.

The third module, Mod3, Denoising with Fused At-
tention, leverages spatial and temporal cues to guide the
U-Net-based denoising process within the diffusion frame-
work. By conditioning on the fused guidance information,
this module enhances detail and continuity across frames,
improving the quality and consistency of the inpainted video
output.

Finally, the fourth module, Mod4, Decoding and
Restoration, decodes the fully denoised frame represen-
tation back into pixel space using a VAE Decoder, produc-
ing the final inpainted frame. Each reconstructed frame
is sequentially reassembled into the full video, yielding a
temporally consistent inpainted video.

3.2. Problem Setting

We define the input video sequence as V0 = {v0t}Nt=1, which
is decomposed into sequential frames. Each frame v0t un-
dergoes processing to isolate the main object of interest,
detected using a fine-tuned YOLOv8 model. The detected
object in each frame is subsequently cropped and resized
to a uniform resolution of p× p, producing a refined video
sequence V = {vt}Nt=1.

For inpainting facilitation, two guidance images are au-
tomatically generated for each frame vt where occlusion is
present: a symmetric image st and a past unobstructed frame
vt̄. The symmetric image st is crafted by mirroring the un-
occluded portion of vt along an axis of symmetry, defined
using Mediapipe for object landmark detection to precisely
determine the symmetry line.

The past unobstructed frame vt̄ is sourced through a fine-
tuned YOLOv8 model that scans previous frames in V for
the most recently visible object, providing essential temporal
guidance.

Additionally, we generate a binary mask mt,i for each

frame vt, where:

mt,i =

{
1, if pixel i is part of the occlusion.
0, otherwise.

In our model, we employ two different mask-generation
techniques tailored for continuous video frames. The first
mask generation model is based on a YOLOv8 structure and
produces bounding box masks. The second model adapts a
segmentation-based approach [2] and provides irregularly
contoured masks. These are parts of preprocessing in Mod1.
We train and test the pipeline on both types, and both results
are presented in Section 4.

With the binary masks mt,i available, we then construct
masked video frames as follows:

Mt = mt,i ⊙ vt,i,∀i ∈ pixels, t ∈ {2, . . . , N},

where ⊙ denotes the Hadamard product, preserving only the
regions indicated by the mask in each frame vt.

At the end of Mod1, the processed frames Mt, st, and vt̄,
for t ∈ {2, . . . , N}, t̄ ∈ {1, . . . , N − 1}, are passed to the
next module, which encodes spatial and temporal cues into
compact representations.

We leverage both the VAE encoder and pre-trained CLIP
image embeddings [17] to extract features for our inpainting
pipeline. The masked video frame Mt is processed by the
VAE encoder, transforming it into a spatial latent map xt.
Gaussian noise is then added to this map, producing a noisy
latent yt as preparation for iterative denoising within the
U-Net.

Simultaneously, the guidance images, namely the sym-
metric reference {st}Nt=2 and past unobstructed frames
{vt̄}N−1

t̄=1 , are encoded individually using the CLIP encoders.
Each guidance image is mapped from its original space to a
p-dimensional feature vector, denoted as zst and zvt̄ .

To ensure compatibility with the dimensions required
for the diffusion module, each guidance embedding zst
and zvt̄ is passed through a multi-layer perceptron (MLP),

fmlp : Rp → Rp
′

, which expands it to a p
′
-dimensional

embedding:

z̃st = fmlp(zst), z̃vt̄ = fmlp(zvt̄).

The expanded embeddings generate key-value pairs
(K1

t , V
1
t ) and (K2

t , V
2
t ) from each guidance image inde-

pendently. These pairs contain spatial and temporal cues,
which are then incorporated into the U-Net’s denoising lay-
ers through cross-attention.

In Mod3, at each U-Net layer, a query Qt derived from
the noisy latent yt is used to compute attention scores A1

t

and A2
t , representing the relevance of each guidance source:

A1
t = softmax

(
QtK

1
t
⊤

√
D

)
V 1
t , A2

t = softmax
(

QtK
2
t
⊤

√
D

)
V 2
t .



The final fused attention score Afused combines A1
t and

A2
t using weighted coefficients:

At
fused = α1 ·A1

t + α2 ·A2
t .

We employ the dynamically computed Afused score at
each U-Net denoising layer, guiding the restoration process
with high-level structural and temporal context. This in-
novation has proven its ability to overcome the continuity
challenges in video inpainting.

During forward diffusion, noise is incrementally added
to yt, yielding

yt,T =
√
ᾱT yt +

√
1− ᾱT ϵ,

where ϵ ∼ N (0, I) represents Gaussian noise, and ᾱT =∏T
i=1 αi is the cumulative scaling factor for the noise com-

ponent for T = 1, 2, ....
The U-Net’s goal is to predict and remove the added noise

at each timestep T . The diffusion loss is defined as:

Ldiff = Eϵ∼N (0,I),T

[∥∥ϵ− ϵθ
(
yt,T , T, A

t
fused

)∥∥2
2

]
, (1)

where ϵθ (yt,T , T, A
t
fused) represents the U-Net’s prediction

of the noise component conditioned on the input and fused
attention at timestep T .

In the reverse diffusion process, the U-Net iteratively
refines yt,T at each timestep T , aiming to reconstruct yt,T−1:

yt,T−1 =
1

√
αT

(
yt,T − 1− αT√

1− ᾱT
ϵθ

(
yt,T , T, A

t
fused

))
+σT z,

where z ∼ N (0, I) and σT represents a noise scale factor at
timestep T , adjusting the variance of the noise added back
during the reverse diffusion step.

Upon completing the reverse diffusion process, the final
denoised latent representation ŷt is passed through the VAE
decoder to reconstruct the inpainted frame:

v̂t = D(ŷt).

These reconstructed frames {v̂t}Nt=1 are then sequentially
reassembled to form the final inpainted video sequence V̂ =
{v̂t}Nt=1, ensuring temporal coherence and spatial fidelity
throughout the sequence.

3.3. Loss Function

To achieve precise spatial inpainting while maintaining tem-
poral coherence across video frames, we propose a combined
loss function. This function is comprised of two components:
the denoising loss, which focuses on spatial reconstruction,
and the motion-consistency loss, which enforces smooth tem-
poral transitions between frames in video sequences. The
combined loss function is defined as

L = Ldiff + λ · Lmotion, (2)
where λ is a weighting factor that balances the impact of
temporal coherence against spatial accuracy.
Denoising Loss: The denoising term operates within the dif-
fusion framework, as described in Section 3.2. The primary
goal is to restore each masked frame Mt by iteratively re-

moving noise at each timestep T , which is explicitly shown
in (1).
Motion-Consistency Loss: To encourage temporal coher-
ence across consecutive frames during the denoising process,
we bring forward a motion-consistency loss term. At each
timestep T of the diffusion process, this loss measures the
temporal consistency between adjacent noisy representations
of video frames as follows

Lmotion =
2

N

N−1∑
t=1

∥yt,T − yt−1,T ∥22, (3)

where yt,T represents frame t at diffusion timestep T , and
N is the total number of frames in the current video. This
loss term encourages the model to maintain consistent visual
features and smooth transitions between consecutive frames
while they are being denoised, thereby preventing tempo-
ral artifacts that might arise from processing each frame
independently.

The motion-consistency loss works in conjunction with
the denoising loss throughout the diffusion process, guaran-
teeing that the final video output exhibits both high-quality
spatial reconstruction and smooth temporal dynamics.

4. Experiments
4.1. Implementation Details

Motivated by the obstructions of facial features in babies,
which cause inaccurate decision-making based on the mon-
itoring results in healthcare settings, we train and test our
framework based on an IRB-approved dataset specifically
designed for infant motion monitoring. This Baby dataset
contains 120 videos, each around 20 seconds in duration,
featuring 49 infants from various ethnic backgrounds. The
videos capture a variety of infant statuses including move-
ment, rest, friction, and pain. The dataset also includes
4, 101 images of the same distribution, photographed under
diverse lighting conditions, which are used in fine-tuning the
YOLO-based detection models.

Both video frames and images are preprocessed, first
centered on the facial region and then resized to 512× 512
pixels. This operation is performed by a fine-tuned YOLOv8-
based model, which demonstrates a 100.0% accuracy in
detecting the main object, in our case the infant’s face.

Our model builds upon the architecture of stable-
diffusion-v1-5 checkpoint [19], with modifications to ac-
commodate the structure of DiffMVR. For each video, we
extract frames with 20 fps, and preprocess the frames follow-
ing the designation we described in Mod1. Then we choose
the ratio of data splitting to be 70% training, 10% validation,
and 20% testing.

To evaluate our model’s robustness across different oc-
clusion scenarios, we implement two distinct masking ap-
proaches. The first uses a fine-tuned YOLOv8n model [24],
trained on annotated images from the Baby dataset, which



achieves 98.0% detection accuracy and an average IoU of
0.979, generating rectangular masks for occlusions. The
second method leverages a fine-tuned custom segmentation
model [2] trained on 400 rigorously labeled images, reach-
ing 97.5% accuracy and producing irregular-shaped masks
with an average IoU of 0.930, better mimicking real-world
occlusions.

4.2. Baseline Models and Comparative Analysis

We evaluate our approach against both image and video
inpainting state-of-the-art methods.

For image-level comparisons, we benchmark against
LaMa [23] for image-guided inpainting, and both original
and fine-tuned versions of Stabilityai [19] and Runwayml
(an open-source implementation that has been recently re-
moved) models for text-guided inpainting. The fine-tuned
variants (Tuned-stabilityai and Tuned-runwayml) are specifi-
cally adapted to our IRB-approved infant dataset. In detail,
• Tuned-stabilityai: Fine-tuned from a general text-to-image

stable diffusion model (Stabilityai) on 10 static images
from 10 different infants from the Baby dataset over 80
epochs using Dreambooth.

• Tuned-runwayml: Fine-tuned from a text-to-image stable
diffusion model (Runwayml) on 3, 091 frames from 40
infants from the Baby dataset over 250 epochs.
For video-level evaluation, we compare DiffMVR against

two advanced video inpainting models. The first is the
End-to-End Flow-Guided Video Inpainting (FGVI) [12],
which leverages flow information for seamless video inpaint-
ing. The second model is a deep learning-based approach
designed for efficient video restoration (PVI) by Zhou et
al. [29]. Additionally, to establish a baseline, we indepen-
dently inpaint each frame using the image-based models
Stabilityai, Runwayml and their variants, and LaMa. We
then reassemble the frames into videos.

4.3. Evaluation Metrics

We evaluate all models both qualitatively and quantitatively,
focusing on both the independent images and continuous
video frames. To demonstrate the robustness of our pipeline
in capturing smooth transitions and restoring intricate de-
tails, we choose the following metrics: FID [6], SSIM [26],
TC [8], and FVD [25]. These metrics allow us to perform
an all-rounded evaluation from three dimensions: structural
similarity, the reality of restoration, and temporal coherence,
for both frame-level and video-level comparisons. For de-
tails on the definition and usage of the metrics, please refer
to the Appendix.

4.4. Quantitative Results

4.4.1 Frame-level

We leverage the 4, 101 images in the Baby dataset for the
calculation of SSIM and FID scores. Additionally, we use

120 videos, each sampled at a frame extraction rate of 20
frames per second, for the calculation of the TC score.

To further demonstrate our model’s general ability to
remove occlusions and restore intricate object details, we in-
troduce the HandOverFace (HOF) dataset as an additional
test set. This dataset comprises of 302 images featuring var-
ious hand-over-face scenarios from a different distribution.
Collected from publicly available sources, the HOF dataset
represents diverse skin tones, motions, and age groups, en-
riching our evaluation with complex real-world cases.

As illustrated in Table 1, our model significantly outper-
forms the benchmark models in maintaining continuity be-
tween frames, as evidenced by the TC score, which surpasses
the next best by 5.6%. Furthermore, achieving the highest
overall metric scores across various datasets demonstrates
our model’s ability to capture detailed, realistic structures
and ensures its robustness beyond our training dataset. Ad-
ditionally, we observe an all-rounded better performance of
segmented masks over bounding boxes, which is expected
since detailed images of parts of a human body come in
irregular shapes, and thus bounding boxes mismatch.

Looking at the test results on the HOF dataset, we have
strong evidence of DiffMVR’s mightiness in capturing au-
thentic, continuous details from a general viewpoint.

By observing the numeric results in Table 1, we select
the Tuned-runwayml as the second-best image-level model
based on its consistent performance across the metrics. We
further conduct relative comparisons between DiffMVR
and Tuned-runwayml, and notice a better performance of
DiffMVR in all metrics, especially the structural similarity
perspective.

4.4.2 Video-level

DiffMVR achieves the best scores for both segmented masks
and bounding boxes, as shown in Table 2. Apparently,
image-based models suffer heavily from inconsistent ob-
ject attributes and discontinuity. Based on the test scores,
we select PVI as the second-best model. PVI has a superior
ability in constructing spatial-similar videos. However, when
it comes to the comparison of the FVD score, which is a
combined metric that evaluates the integrated performance
on structural similarity and temporal coherence, DiffMVR
stands out. DiffMVR persistently achieves the best SSIM
and TC scores, this substantial margin highlights DiffMVR’s
effectiveness in managing both the larger Baby dataset and
the much smaller HOF dataset. To further demonstrate the
overall robustness of DiffMVR, we show the visualized re-
sults in the following section.

4.5. Qualitative Results

To demonstrate the efficacy of our approach, we provide qual-
itative comparisons across videos with varying durations and



Baby Dataset - Segmented masks Baby Dataset - Bounding boxes HOF Dataset - Segmented masks
Model FID ↓ SSIM ↑ TC ↓ FID ↓ SSIM ↑ TC ↓ FID ↓ SSIM ↑ TC ↓
DiffMVR 2.363 0.898 0.395 2.196 0.864 0.393 5.412 0.786 0.428
Stabilityai 3.066▲29.8% 0.689▼23.3% 0.428▲8.4% 3.230▲47.0% 0.706▼18.3% 0.430▲9.4% 6.118▲13.0% 0.751▼4.5% 0.430▲0.5%

Tuned-stabilityai 2.782▲17.7% 0.731▼18.6% 0.417▲5.6% 2.951▲34.4% 0.739▼14.5% 0.421▲1.1% 6.225▲15.0% 0.726▼7.6% 0.431▲0.7%

Runwayml 2.913▲33.5% 0.749▼16.6% 0.431▲9.1% 2.931▲0.1% 0.738▼14.6% 0.433▲10.2% 5.943▲9.8% 0.742▼5.6% 0.430▲0.5%

Tuned-runwayml 2.365▲0.1% 0.760▼15.4% 0.430▲8.9% 2.126▼3.2% 0.745▼13.8% 0.432▲9.9% 6.109▲12.9% 0.735▼6.5% 0.434▲1.4%

LaMa 2.940▲24.4% 0.712▼20.7% 0.456▲15.4% 3.105▲41.4% 0.670▼22.5% 0.461▲17.3% 7.025▲29.8% 0.731▼7.0% 0.456▲6.5%

FGVI 2.850▲20.6% 0.832▼7.3% 0.420▲6.3% 2.902▲32.1% 0.831▼3.8% 0.423▲7.6% 6.299▲16.4% 0.747▼5.0% 0.431▲0.7%

PVI 2.773▲17.4% 0.844▼6.0% 0.395 2.858▲30.1% 0.836▼3.2% 0.396▲0.8% 6.345▲17.2% 0.762▼3.1% 0.429▲0.2%

Gap +0.08% +18.16% +8.14% −3.29% +15.97% +9.03% +11.41% +6.94% +1.38%
Gap between Masks +7.60% +3.94% −0.51% −−− −−− −−− −−− −−− −−−

Table 1. Quantitative results comparing different models using FID, SSIM, and TC metrics on frame-level for the Baby and HOF datasets.
The HOF dataset is used for proving the generality of DiffMVR. Dash means the value is undefined. The ▲/▼ indicates a relative
increase/decrease in metric score compared to DiffMVR. Gap refers to the extent by which DiffMVR outperforms (+) or is outperformed by
(-) the second-best model (Tuned-runwayml). Gap between Masks refers to the extent by which segmented masks outperforms (+) or is
outperformed by (-) the bounding boxes, both within DiffMVR model.

Baby Dataset - Segmented masks Baby Dataset - Bounding boxes
Model ¯FID ↓ ¯SSIM ↑ T̄C ↓ FVD ↓ ¯FID ↓ ¯SSIM ↑ T̄C ↓ FVD ↓
DiffMVR 2.095 0.908 0.338 48.05 2.119 0.880 0.341 50.47
Stabilityai 2.406▲14.8% 0.738▼18.7% 0.421▲24.6% 73.94▲53.9% 2.497▲17.8% 0.736▼16.4% 0.427▲25.2% 74.39▲47.4%

Tuned-stabilityai 2.352▲12.3% 0.756▼16.7% 0.398▲17.8% 71.28▲48.3% 2.414▲13.9% 0.747▼15.1% 0.401▲17.6% 73.06▲44.8%

Runwayml 2.410▲15.0% 0.759▼16.4% 0.423▲25.1% 73.02▲52.0% 2.463▲16.2% 0.748▼15.0% 0.408▲19.6% 73.85▲46.3%

Tuned-runwayml 2.247▲7.3% 0.763▼16.0% 0.417▲23.4% 70.86▲47.5% 2.229▲5.2% 0.749▼14.9% 0.420▲23.2% 72.27▲43.2%

LaMa 2.933▲40.0% 0.720▼20.7% 0.454▲34.3% 77.95▲62.2% 3.195▲50.8% 0.695▼21.0% 0.455▲33.4% 78.12▲54.8%

FGVI 2.115▲1.0% 0.849▼6.5% 0.350▲3.6% 52.75▲9.8% 2.142▲1.1% 0.845▼4.0% 0.351▲2.9% 55.60▲10.2%

PVI 2.062▼1.6% 0.894▼1.5% 0.339▲0.3% 48.92▲1.8% 2.105▼0.7% 0.860▼2.3% 0.346▲1.5% 51.04▲1.1%

Gap −1.60% +1.25% +0.29% +1.78% −0.67% +2.33% +1.45% +1.12%
Gap between Masks +1.13% +3.18% +0.88% +4.79% −−− −−− −−− −−−

Table 2. Quantitative results comparing different models using FID, SSIM, TC, and FVD metrics on video-level for the Baby dataset. We
have PVI as the second-best model, for it has the majority of the second placement in metric values. See the caption of Table1 for other
explanations.

complexities of masking. Figure 3 offers a side-by-side com-
parison of original and inpainted video frames, illustrating
the capabilities of our method against baseline techniques.

Further displaying the robust performance of DiffMVR,
Figure 2 highlights the model’s ability to accurately restore
dynamic scenes on out-of-distribution images. It can effi-
caciously reconstruct movements within the scene. Further-
more, in-distribution results in Figure 3 prove that DiffMVR
is the only model that meets all the following demands: it
achieves a smooth fusion between inpainted and unmasked
regions, it removes obstructions, and it accurately restores
the baby’s specific facial features - rather than incorrectly
substituting with random body parts. Moreover, it pre-
serves background integrity and maintains content consis-
tency throughout. In contrast, other baseline models exhibit
several shortcomings, such as distorted faces or backgrounds,

incomplete removal of hands, restoration of incorrect hands
(not belonging to the observed baby), and only partial re-
moval of obstructions. This disadvantage is present even for
the second-best model Tuned-runwayml.

DiffMVR adeptly handles various challenging conditions
such as dim lighting and varied object textures and colors,
demonstrating its wide applicability in diverse inpainting
scenarios. See the Appendix for more details.

4.6. Ablation Study

In the inpaint pipeline, we develop two key innovations: the
dual-guidance module, which synthesizes fused embeddings
from both short-term past and present frames to generate a
new combined attention score, and the U-Net module, which
designs and integrates a new motion-consistency loss term
to guide the denoising process. In this section, we conduct a



Figure 2. Occlusion removal and face restore results on the HOF
Dataset [3] applying DiffMVR. The left shows good inpaint results,
and the right has some bad results. Bad could mean occlusion
removal failure, restored contents incompatible with the original
object, and the mask area not seamlessly connecting with the un-
changed regions.

Baby 1 Baby 2 Baby 3 Baby 4 Baby 5 Baby 6

Figure 3. Qualitative comparison of DiffMVR with the bench-
marked models on the Baby dataset, including pain, move, and rest
babies. Row 1 displays inputs from the video sources at the 5th

second, leveraging segmented masks. The content is copyrighted
and reprinted with permission. Rows 2, 3, 4 show inpainting results
applying DiffMVR trained on segmented masks, with guide 1 from
the 4th second of videos; Tuned-runwayml, using text prompt “re-
move hands;” Tuned-stabilityai, using text prompt “remove hands, ”
respectively.

comprehensive ablation study to assess the effectiveness of
having either and both modules in the video object restoring
pipeline.

4.6.1 Guidance Components Ablation

We contrast the performance of our model with variants
that rely solely on a single-image guidance to illustrate the
advantages of our multi-frame guidance module. This ex-
periment specifically tests the impact of our innovative ap-
proach, which encodes guidance images independently and
integrates them through a weighted cross-attention mecha-

nism within the U-Net layers. Since from Table 2 segmented
masks have better test results in the majority of aspects, we
only compare results based on this masking type. As shown
in Table 3, excluding either present or prior guidance causes
the inpaint result metrics to drop drastically, even worse than
baseline models sometimes. Utilizing the current frame as
guidance does not enhance the inpainting process, as evi-
denced by its subpar performance, ranking second to last
in comparison to benchmarks in both Table 3 and Table 2.
By comparing DiffMVR against those restricted to a single
type of guidance, we stress the necessity of the dual-image
guidance design in our pipeline.

4.6.2 Loss Component Ablation

Building upon the findings from Section 4.6.1, this ablation
study further investigates the cumulative impact of integrat-
ing the additional motion loss component into our pipeline.
To systematically assess the impact of each component, we
conduct experiments under several configurations. Using
a single past frame as guidance and using merely denoise
loss for training is the baseline setting. We gradually add the
designs in: i) baseline + dual-guide, ii) baseline + motion
loss, and iii) baseline + dual-guide + motion loss, which is
our model, DiffMVR.

We present the results in Table 4. As expected, adding the
motion-consistency loss leads to a lower TC score and higher
FVD compared to baseline, even when a single image is used
as guidance. Adding motion as a portion of loss enhances
temporal smoothness and contributes to a more realistic and
accurate video frame restoration, revealed by the scope of
changes in the row of Gap. Besides, the comparison between
baseline and DiffMVR shows that incorporating both the
motion loss and using dual guidance notably improves the
model’s performance by 26% on average. This confirms that
our approach synergizes efficiently.

Segmented masks

Model FID SSIM TC FVD

Dual guide 2.10 0.91 0.34 48.05

Single guide
(symmetric) 2.57▲22.4% 0.75▼17.6% 0.42▲23.5% 59.51▲23.9%

Single guide
(past frame) 2.23▲6.2% 0.77▼15.4% 0.38▲11.8% 60.80▲26.5%

Single guide
(present frame) 2.69▲28.1% 0.74▼18.7% 0.39▲14.7% 72.79▲51.5%

Table 3. Quantitative ablation test on the Baby dataset, highlighting
that the design of multi-guidance achieves the best performance.
The motion loss is included throughout this comparison test. The
▲/▼ indicates a relative increase/decrease in metric score compared
to Dual guide (DiffMVR).



Segmented Masks

Configuration FID SSIM TC FVD

baseline 2.86 0.68 0.41 65.92
baseline + dual 2.32▼18.9% 0.74▲8.8% 0.38▼7.3% 61.57▼6.6%

baseline + motion 2.23▼22.1% 0.77▲13.2% 0.38▼7.3% 60.80▼7.8%

DiffMVR:
baseline + dual + motion

2.10▼26.6% 0.91▲33.8% 0.34▼17.1% 48.05▼27.1%

Gap (%) 9.48 22.97 10.52 21.96

Table 4. A pervasive ablation test on the Baby dataset, which
exemplifies the impact of gradually adding motion-consistency
loss to different guidance configurations. The results highlight the
combined effect of our innovations in enhancing video inpainting
performance. The ▲/▼ indicates a relative increase/decrease in
metric score compared to baseline. Gap refers to the extent by
which DiffMVR: baseline + dual + motion outperforms baseline +
dual.

5. Conclusions
In this study, we introduced DiffMVR, a multi-image guided
video inpainting model designed to restore complex details
in video sequences of varying lengths, effectively leveraging
both short-term and spatial-temporal pixel information.

Our experimental results demonstrate that DiffMVR of-
fers promising performance, surpassing all baseline models
in both visual quality and quantitative metrics. This success
underscores the model’s proficiency in handling intricate
video restoration tasks. However, opportunities for further
refinement exist. One area for potential enhancement is the
optimization of the weighting factor λ. Determining the
optimal λ that aligns with user preferences and specific ap-
plication requirements remains a challenge and a promising
direction for future research.

Overall, DiffMVR showcases significant robustness and
efficacy in video-level media restoration. We believe that
this work not only advances the field of video inpainting
but also lays a foundation for future enhancements. It is
our hope that DiffMVR will catalyze further innovations
in video processing technologies and inspire downstream
video-level inpainting tasks across various domains.
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Alejandro Romero-González. A comprehensive review of
yolo architectures in computer vision: From yolov1 to yolov8
and yolo-nas. Machine Learning and Knowledge Extraction,
5(4):1680–1716, 2023.

[25] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric
challenges. arXiv:1812.01717, 2019.

[26] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[27] Julia Wolleb, Florentin Bieder, Robin Sandkühler, and
Philippe Claude Cattin. Diffusion models for medical
anomaly detection. In International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention,
2022.

[28] Zhixing Zhang, Bichen Wu, Xiaoyan Wang, Yaqiao Luo,
Luxin Zhang, Yinan Zhao, Peter Vajda, Dimitris Metaxas,
and Licheng Yu. Avid: Any-length video inpainting with
diffusion model. arXiv preprint arXiv:2312.03816, 2024.

[29] Shangchen Zhou, Chongyi Li, Kelvin C. K. Chan, and
Chen Change Loy. Propainter: Improving propagation

and transformer for video inpainting. arXiv preprint
arXiv:2309.03897, 2023.

[30] Tao Zhou, Brian David Johnson, and Rui Li. Patch-based
texture synthesis for image inpainting. arXiv preprint
arXiv:1605.01576, 2016.


	. Introduction
	. Related Work
	. Methods
	. Model Pipeline
	. Problem Setting
	. Loss Function

	. Experiments
	. Implementation Details
	. Baseline Models and Comparative Analysis
	. Evaluation Metrics
	. Quantitative Results
	Frame-level
	Video-level

	. Qualitative Results
	. Ablation Study
	Guidance Components Ablation
	Loss Component Ablation


	. Conclusions

