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Abstract
Federated Learning (FL) faces significant chal-
lenges related to communication efficiency and
performance reduction when scaling to many
clients. To address these issues, we explore the
potential of using low-rank updates and provide
the first theoretical study of rank properties in FL.
Our theoretical analysis shows that a client’s loss
exhibits a higher-rank structure (i.e., gradients
span higher-rank subspaces of the Hessian) com-
pared to the server’s loss, and that low-rank ap-
proximations of the clients’ gradients have greater
similarity. Based on this insight, we hypothe-
size that constraining client-side optimization to a
low-rank subspace could provide an implicit reg-
ularization effect while reducing communication
costs. Consequently, we propose FedLoRU, a
general low-rank update framework for FL. Our
framework enforces low-rank client-side updates
and accumulates these updates to form a higher-
rank model. Additionally, variants of FedLoRU
can adapt to environments with statistical and
model heterogeneity by employing multiple or hi-
erarchical low-rank updates. Experimental results
demonstrate that FedLoRU performs comparably
to full-rank algorithms and exhibits robustness to
heterogeneous and large numbers of clients.

1. Introduction
Federated learning (FL, (McMahan et al., 2017)) is a col-
laborative learning framework designed to enhance privacy
preservation by training models on clients’ local data with-
out sharing raw information. While FL offers privacy bene-
fits, it trades off some performance compared to centralized
learning, largely due to communication overhead and hetero-
geneity. Despite improvements in computation and memory
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capacities, communication speeds have only slightly im-
proved, making communication overhead a major factor
in slowing down FL (Zheng et al., 2020). Additionally,
various forms of heterogeneity—statistical, system, and de-
vice—further complicate FL (Ye et al., 2023; Kairouz et al.,
2021). These issues are especially pronounced with a large
number of clients, where frequent, less impactful updates
slow down training and reduce performance.

Addressing these challenges is becoming increasingly crit-
ical, for example, training large language models (LLMs)
in FL. Utilizing private datasets on edge devices for LLM
training is promising due to the limited availability of public
data (Ye et al., 2024). However, this approach presents sig-
nificant issues, notably in terms of communication overhead,
as edge devices possess heterogeneous resources and data.
Additionally, the need for effective regularization across
clients is required. To address the two main challenges of
communication overhead and performance reduction with
increasing local clients in FL, we analyze the rank nature of
loss landscape in FL and leverage low-rank updates.

There has been substantial research focusing on the low-
rank characteristics in centralized learning. By low rank, we
refer to gradients spanning a low rank subspace of Hessian
at any given weights or the weight matrix being of the form
AB where the number of columns of A is low. Methods
such as LoRA (Hu et al., 2021), DyLoRA (Valipour et al.,
2022), and QLoRA (Dettmers et al., 2024) utilize this factor-
ization to decrease the number of trainable parameters, thus
conserving memory and computational resources. Further
observations (Huh et al., 2021; Ji & Telgarsky, 2018) indi-
cate that over-parameterized models tend to find low-rank
solutions, which provide implicit regularization effects.

However, the rank properties of the loss landscape in FL
remain under-explored. Herein, we first analyze the dif-
ference in the stable rank—defined as the squared ratio of
the Frobenius norm to the spectral norm—between client
Hessians and the server Hessian of any weights, discovering
that a client exhibits a higher-rank structure. We also show
that low-rank approximations of local gradients align better
in direction than their full-rank counterparts. Based on this
insight, we hypothesize that the client’s higher-rank Hes-
sian amplifies cross-client discrepancies, and that restricting
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client-side updates could offer both implicit regularization
and reduced communication costs.

To address this, we propose the Federated Low-Rank Up-
dates (FedLoRU) algorithm, which mitigates communica-
tion overhead and accommodates many clients through low-
rank updates. FedLoRU factorizes client-side update matri-
ces into A and B and applies iterative optimization to these
low-rank factorized matrices. Clients and the server share
the factorized matrices, which the server then aggregates.
Matrices A and B are being communicated between the
clients and server, rather than the much larger matrix AB.
To make the model’s weight rank high, FedLoRU succes-
sively accumulates low-rank matrices. We also generalize
the low-rank update strategy within federated learning for
various heterogeneous settings.

Our comprehensive approach underscores the potential of
low-rank updates not only to enhance communication ef-
ficiency but also to impose implicit regularization. Our
contributions can be summarized as follows. 1) We propose
FedLoRU, the first algorithm using successive low-rank up-
dates for both pre-training and fine-tuning in federated learn-
ing, and introduce variants of FedLoRU for personalization
and model heterogeneity settings; 2) We investigate the rank
properties of client and server losses, analytically show-
ing that under stochastic sampling and sufficiently large
model, the stable rank of the Hessian of the loss function
increases with smaller sample sizes; 3) We provide empiri-
cal evidence of the higher rank structure of client losses and
demonstrate that restricting the rank of local updates aids in
implicit regularization; 4) On average, FedLoRU improves
state-of-the-art communication-efficient federated learning
algorithms on a variety of datasets, including LLM fine-
tuning, and exhibits superior performance as the number of
clients increases.

2. Related Work
Communication-Efficient Federated Learning Exten-
sive research has addressed communication challenges in FL
(Shahid et al., 2021). FedPAQ (Reisizadeh et al., 2020) and
AdaQuantFL (Jhunjhunwala et al., 2021) employ quantiza-
tion to reduce the precision of weights, while Fed-Dropout
(Caldas et al., 2018) and FedMP (Jiang et al., 2023) apply
pruning to remove less important weights. Since quantiza-
tion and sparsification do not alter the core network struc-
ture, they can be easily combined with other algorithms
(e.g., FedLoRU) to reduce communication overhead.

In contrast, model compression techniques modify the
model structure itself by compressing the original model
before communication and restoring it afterward. Fed-
DLR (Qiao et al., 2021) compresses using low-rank ap-
proximation for both server-to-client and client-to-server

communication but reverts to the full model for local train-
ing. FedHM (Yao et al., 2021) compresses only during
server-to-client communication, where clients train factor-
ized low-rank models that are aggregated by the server.
Although both methods reduce communication overhead,
their server-side compression approaches can lead to per-
formance degradation. To mitigate potential information
loss during server-side compression, we focus on client-side
factorization, avoiding compression processes.

Low-rank nature of centralized and federated learn-
ing Numerous studies (Gur-Ari et al., 2018; Li et al.,
2018; Sagun et al., 2016) assert that the training process in
deep learning inherently possesses a low-rank nature. Low-
Rank Adaptation (LoRA, (Hu et al., 2021)) is a represen-
tative algorithm that leverages this low-rank characteristic,
particularly for fine-tuning tasks, by freezing pre-trained
weights and applying low-rank updates via the decomposi-
tion W = W0 + AB, where W0 ∈ Rm×n, A ∈ Rm×r,
B ∈ Rr×n, r ≪ m,n. However, effectively leveraging
the low-rank structure during pre-training remains a chal-
lenge, as the weights do not inherently exhibit a low-rank
nature (Yu & Wu, 2023; Zhao et al., 2024). To address
this, ReLoRA (Lialin et al., 2023) seeks to achieve a higher-
rank model by accumulating multiple low-rank updates,
expressed as W = W0 +

∑M
i=1 AiBi where Ai ∈ Rm×r,

Bi ∈ Rr×n.

In federated learning, some research has aimed to exploit the
low-rank nature observed in centralized learning. LBGM
(Azam et al., 2021) and FedLRGD (Jadbabaie et al., 2023)
approximate gradients using past or sampled gradients, as-
suming gradients lie in a low-rank subspace. However, there
is a noticeable gap in analyzing rank characteristics specific
to federated learning. In the context of federated learning,
there is a complex loss landscape involving multiple client-
side and a single server-side optimization, and leveraging
a low-rank structure needs to consider their respective rank
structures. To our knowledge, no prior work has examined
the rank structure in federated learning contexts without
making very stringent assumptions. Our study is pioneering
in addressing this gap, using analytical results and insights
to develop a novel algorithm.

Low-Rank Adaptation in Federated Learning Recent
studies have studied the application of LoRA within fed-
erated learning frameworks. Notable algorithms, such as
FedLoRA (Wu et al., 2024; Yi et al., 2023), FFALoRA
(Sun et al., 2024), and Hyperflora (Lu et al., 2024), employ
LoRA adapters to facilitate personalization. These methods
apply low-rank adaptation to a pre-trained model during
the local personalization training phase. On the other hand,
other works (Zhang et al., 2023; Kuo et al., 2024; Cho et al.,
2023) apply LoRA for fine-tuning within federated learning
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environments.

These approaches use only one low-rank matrix that restricts
the model to a low-rank subspace. In contrast, we utilize
multiple accumulated low-rank matrices allowing the model
to achieve higher rank. Specifically, we extend the concept
of LoRA by incorporating client-side low-rank updates and
server-side accumulation to address the low-rank limitation
of LoRA as well as the challenges posed by communication
and client-server rank disparity. We also generalize the low-
rank strategy within federated learning for both pre-training
and fine-tuning, and for heterogeneous environments.

3. Analyzing Rank Nature in FL
In centralized learning, neural network losses exhibit a low-
rank structure, indicating that the gradient lies within the
subspace spanned by the Top-k eigenvectors of the Hessian
during training (Gur-Ari et al., 2018). Although efforts
have been made to utilize this low-rank structure to enhance
federated learning algorithms, there is a lack of studies that
analyze the rank structure of federated learning. To the best
of our knowledge, we are the first to provide a theoretical
analysis of the rank structure in FL. Specifically, we examine
the rank properties of FL and explore the effect of low-rank
updates on enhancing gradient alignment.

Notation and problem setup Suppose ψ(x,y) is a data
generating distribution for an input-output pair (x,y) ∈
Rdx × Rdy . We consider the problem of finding a predic-
tion function hR(·; ·) : Rdx × RR → Rdy parameterized
by a R-dim weight vector ωR ∈ RR. Given a loss function
ℓ(·, ·) : Rdy × Rdy → R, the true risk Ltrue(h

R, ωR) =∫
ℓ(hR(x;ωR),y)dψ(x,y) is defined as the loss over the

data-generating distribution ψ(x,y). The corresponding
true Hessian is Htrue(h

R, ωR) = ∇2Ltrue(h
R, ωR). If

DN = {(x1,y1), · · · , (xN ,yN )} is a dataset generated
from the distribution ψ, the empirical loss and Hessian for
DN are fN (hR, ωR) =

∑
(x,y)∈DN

1
N ℓ(h

R(x;ωR), y) and

HN (hR, ωR) =
∑

(x,y)∈DN

1
N

∂2

∂(ωR)2
ℓ(hR(x;ωR), y).

We consider a random selection of M samples without re-
placement from DN to form a sub-dataset DM ⊆ DN . Let
fM (hR, ωR) and HM (hR, ωR) denote the loss and Hessian
for the sub-dataset DM . In federated learning, fN can be
considered as the loss that the server optimizes, while fM
represents the loss of a local client assuming the homoge-
neous setting.

3.1. Higher Rank Nature of Clients in FL

In this section, we demonstrate that the local Hessian pos-
sesses a higher stable rank than the server’s Hessian when
the model size is sufficiently large. This indicates that the
loss landscape at a client is more complex than that of the

server, which may contribute to divergence of local models
after local training.

Stable rank To compare the rank properties of Hes-
sians of a client and the server, we use the stable rank
srank(A) =

∥A∥2
F

∥A∥2
2
=

∑n
i=1 σ2

i (A)

σ2
1(A)

, where n is the rank of
matrix A and σi(A) denotes its i-th singular value. Unlike
traditional rank, which discretely counts non-zero singular
values, the stable rank provides a continuous and more in-
formative proxy, effectively capturing the low-rank nature
of deep learning since stable rank is sensitive to the distri-
bution of the singular values. This property is particularly
useful in deep learning, where gradient descent trajectories
are often dominated by a few large eigenvalues, and the sub-
space spanned by the corresponding eigenvectors critically
influences training dynamics (Gur-Ari et al., 2018; Sagun
et al., 2016; Sabanayagam et al., 2023). By emphasizing
the contribution of large eigenvalues, the stable rank serves
as a practical tool for quantifying the curvature of the loss
landscape.

Moreover, the stable rank exhibits robustness to small per-
turbations in the Hessian. In practice, minor changes in
model parameters or data points can lead to significant vari-
ations in the traditional rank, but these do not substantially
affect the stable rank. This robustness ensures that stable
rank provides consistent insights to the loss landscape, even
under small variations in the training process.

Comparing the stable rank of the client and server Hes-
sians For non-zero real numbers θ1, · · · , θk, we define
ΩR(θ1, · · · , θk) as the family of pairs (hR, ωR), where hR

is an R-dimensional prediction function and ωR is a weight
vector, such that the true Hessian has non-zero eigenvalues
θ1, · · · , θk. Specifically, ΩR(θ1, · · · , θk) = {(hR, ωR) :
Htrue(h

R, ωR) has non-zero eigenvalues θ1, · · · , θk}. Let
Ω(θ1, · · · , θk) =

⋃
R ΩR(θ1, · · · , θk), representing the

union of ΩR(θ1, · · · , θk) over all dimensions R. We aim
to show that the difference in the stable rank between the
Hessians of the server and a client eventually becomes posi-
tive as dimension R approaches infinity within the space of
Ω(θ1, · · · , θk), which contains infinitely many R for which
ΩR(θ1, · · · , θk) ̸= ∅, as proved in Appendix A.1.

We next focus on comparing the stable rank of the client and
server Hessians. For given p, q ∈ N, let θ1 > · · · > θp >
0 > θp+1 > · · · > θp+q be deterministic non-zero real
numbers. Let R be an integer such that R ≥ R̄, where R̄
is the smallest integer for which ΩR̄(θ1, · · · , θp+q) is non-
empty and consider any (hR, ωR) ∈ ΩR(θ1, · · · , θp+q).
Here, HN (hR, ωR) and HM (hR, ωR) represent server and
local Hessians in FL, respectively. To compare the stable
rank of two Hessians, we consider the additive perturbed
model of the true Hessian as described by (Baskerville et al.,
2022):
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HN (hR, ωR) = Htrue(h
R, ωR) + ϵRN , (1)

HM (hR, ωR) = Htrue(h
R, ωR) + ϵRM . (2)

Here, ϵRN , ϵ
R
M ∈ RR×R are random error matrices associ-

ated with each Hessian. These matrices are assumed to
be scaled according to ϵRN = sNX

R, where XR ∈ RR×R

is a random real symmetric matrix where each element is
independently drawn from a distribution with mean 0 and
variance σ2/R. The scaling factor sN = s(N) is defined as
a monotonic decreasing function mapping N to (0, 1). For
simplicity in notation, we use HR

N = HN (hR, ωR) and
HR

true = Htrue(h
R, ωR) whenever the context is clear.

Notably, XR is a Wigner matrix, commonly used in Ran-
dom Matrix Theory (RMT) as an error or perturbation ma-
trix. In this role, Wigner matrices capture statistical fluc-
tuations in the eigenvalues and eigenvectors of a Hessian,
making it particularly suitable for analyzing a loss landscape.
For further discussion on XR, please refer to Appendix A.5.

(Granziol et al., 2022) employs the model HR
M = HR

N +ϵR,
implying a dependency structure between HR

M and HR
N .

However, their analysis assumes independence between
these matrices, which is problematic given the underlying
model and practical considerations. In contrast, we address
this issue by introducing two decoupled additive perturbed
models.

Next, we determine the limiting eigenvalues of the Hessians
HR

N in relation to the eigenvalues of HR
true as R→∞.

Proposition 3.1 (Limiting eigenvalues of HR
N (modified

from (Baskerville et al., 2022))). Let HR
N defined as in

(1). If λi(HR
N ) denotes the i-th eigenvalue of HR

N , then for
i = 1, · · · , p, the following holds:

λi(H
R
N )→

{
g−1
N (θi) if g−1

N (θi) > UN

UN otherwise
(3)

as R→∞, and for i = 0, · · · , q − 1, we have

λR−i(H
R
N )→

{
g−1
N (θp+q−i) if g−1

N (θp+q−i) < LN

LN otherwise.
(4)

Here, g−1
N (θ) = θ +

σ2s2N
θ , UN = 2σsN , and LN =

−2σsN . In addition, for p < i ≤ P − q, we have
λi(H

R
N )→ {LN , UN}.

Convergence in our analysis is almost sure uniform con-
vergence. Compared to (Baskerville et al., 2022), which
focuses solely on outlier eigenvalues with a particular form
of µ, we extend the analysis to bulk eigenvalues and use a
general µ with compact support. By the proposition, the
i-th largest or smallest limiting eigenvalues of HN are de-
termined by the values of g−1

N (θi). If g−1
N (θi) falls within

Figure 1: The estimated stable ranks of the Hessians are
compared for dataset sizes of 50 and 500 (averaged over
multiple runs). The estimated stable rank for the size of 50
consistently exceeds that of 500. For details of the experi-
ment, see Appendix C.3

the support of µN , the corresponding limiting eigenvalues
converge to the bounds. If g−1

N (θi) does not lie within this
support, it converges to g−1

N (θi) itself; these eigenvalues
are typically referred to as outlier eigenvalues in the litera-
ture. The detailed proof is provided in Appendix A.2 and is
similar to the proof in (Baskerville et al., 2022).

In the following theorem, we demonstrate that a smaller
dataset results in a higher stable rank in the limit except for
the extremely ill-conditioned situation.

Theorem 3.2. Let HR
N and HR

M be the Hessians as defined
in (1) and (2) and define θ0 = θ1 · 1|θ1|≥|θp+q| + θp+q ·
1|θ1|<|θp+q|. Assume θ20 ≥ σ2s2M . Then the difference in the
limiting stable rank between HR

N and HR
M is positive and

bounded below as follow

ˆsrank(HM )− ˆsrank(HN ) ≥ s2M − s2N
g−1
M (θ0)2g

−1
N (θ0)2 ∑

j∈PN∪QN

8σ4sMsN

∣∣∣∣θ0θj − θj
θ0

∣∣∣∣+ 4σ2BN

(
θ20 −

σ4s2Ms
2
N

θ20

) ,
(5)

where BN = |{i : λi(HR
N ) → UN or LN}|, PN = {i ≤

p : g−1
N (θi) > UN}, and QN = {i > p : g−1

N (θi) < LN}.
Furthermore, the lower bound decreases with M .

This theorem characterizes the stable rank difference be-
tween HR

M and HR
N by showing that it is bounded below

by a term proportional to (s2M − s2N ). As M decreases
relative to N , this term increases. In the special case
where θ20 ≤ σ2 s2M , the gap can become negative; how-
ever, this scenario arises only when the Hessian is extremely
ill-conditioned, meaning that the largest singular value is
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extremely small. Under a typical scaling assumption such
as sM = 1/M , σ2s2M remains sufficiently small in most
practical settings, making such ill-conditioning unlikely.
Consequently, except for highly degenerate settings, the
stable rank difference between local and global Hessians
remains strictly positive, and the magnitude of this differ-
ence grows as the size of each local dataset becomes smaller
relative to the aggregate dataset.

Our empirical results in Figure 1 further support this by
demonstrating that smaller datasets exhibit higher estimated
stable ranks.

3.2. Gradient Alignment Effect of Local Low-Rank
Updates

In this section, we examine how low-rank approximations
of local gradients promote alignment among clients in an FL
setting. Intuitively, as the approximation rank r decreases,
the components of each local gradient become more concen-
trated along the most significant directions of its Hessian,
which in turn improves similarity across different clients.
This phenomenon provides an important insight into the
benefits of performing local low-rank updates: even when
clients operate on potentially smaller datasets, restricting
updates to low-rank directions can enhance overall gradient
alignment.

Building on results from (Benaych-Georges & Nadakuditi,
2011), we know the limiting eigenvector transition. For
i ∈ PN ∪ QN , let vi be the unit-norm eigenvector asso-
ciated with the eigenvalue θi of HR

true and let ui be the
corresponding unit-norm eigenvector of HR

N . Then for
j ∈ {j ∈ PN ∪QN : j ̸= i}, we have

|⟨vi, ui⟩|2 → 1− σ2s2N
θ2i

, (6)

|⟨vj , ui⟩|2 → 0. (7)

In other words, each limiting eigenvector of HR
N lies in a

cone around the corresponding eigenvector of HR
true. When

N is small, ⟨vi, ui⟩ remains farther from unity. This im-
plies that the similarity between the eigenvectors of HR

N

and HR
true is diminished in the regime of small N . More-

over, for a client operating with a dataset size M < N , the
spectral similarity ⟨vi, ui⟩ becomes smaller than that of a
client with a larger dataset. This phenomenon can degrade
performance when a client holds very limited local data, as
its local Hessian captures fewer reliable directions than one
computed from a larger dataset.

For eigenvectors corresponding to bulk eigenvalues, nu-
merous studies (Anderson et al., 2010; Antti Knowles,
2013) have demonstrated that these eigenvectors exhibit
an isotropic distribution, with each component behaving as
an independent and identically distributed random variable

with zero mean and varianceO(1/R). This indicates that no
single element of the eigenvector dominates. Additionally,
the bulk eigenvectors primarily arise from the random noise
in ϵRN . Accordingly, we assume that the bulk eigenvectors
are random vectors residing in the subspace orthogonal to
that spanned by the edge eigenvectors.

Gradient alignment We define the full-rank approxima-
tion of ∇fN (hR, ωR) with respect to HR

N as

∇f̂N,full(h
R, ωR) =

s∑
i=1

∂uifN (hR, ωR)ui, (8)

where u1, . . . , us are eigenvectors of HR
N associated with

the eigenvalues θ1, . . . , θs, ordered by magnitude, and
∂ufN (hR, ωR) is the directional derivative of fN (hR, ωR)
with respect to u. A rank-r approximation then restricts this
sum to only the top-r eigenvectors

∇f̂N,r =

r∑
i=1

∂ui
fN (hR, ωR)ui. (9)

Given K clients, each with a dataset of size N , we denote
their corresponding Hessians by H

(k)
N for k ∈ {1, . . . ,K}.

Let

CR
N,r(k1, k2) = cos

(
∇f̂ (k1)

N,r , ∇f̂
(k2)
N,r

)
(10)

be the cosine similarity between the rank-r approximations
of the gradients of clients k1 and k2.

Theorem 3.3. For any r ∈ N and k1, k2 ∈ {1, . . . ,K}
with k1 ̸= k2,∣∣E [

CR
N,r(k1, k2)− CR

N,r+1(k1, k2)
]
− gN (r)

∣∣→ 0 (11)

as R→∞, where gN (r) is strictly positive and expressed
in the proof in Appendix A.4.

According to Theorem 3.3, the expected cosine similarity
between two clients’ rank-r gradient approximations de-
creases as r increases for large R. Specifically, once r is
large enough to include all dominant directions, adding an
additional component contributes random noise from the
bulk eigenvectors, thereby reducing the directional align-
ment. For small r, incorporating the (r + 1)-th principal di-
rection also reduces similarity, because although it remains
more critical than the bulk noise directions, it contributes
less universally aligned signal than the top-r directions.

One major limitation of Theorem 3.3 is that it analyzes
the alignment between the gradient approximations of the
clients based on a single update step. However, in practi-
cal federated learning settings, each local client typically
performs multiple gradient descent steps during each round.
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Algorithm 1 FedLoRU.
Require: model W , initial low-rank update matrices A0,B0

Require: scaling factor α, accumulation cycle τ , total round T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM .
Server distributes At−1,Bt−1 to clients in KM .
for each client k ∈ KM do

Find A
(k)
t ,B

(k)
t by solving (12) starting from

At−1,Bt−1.
Send A

(k)
t ,B

(k)
t to the server.

end for
Server aggregation:
At ←

∑
k∈KM

p(k)A
(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients .
Each client k updates its local copy of the global model:
W ←W + αAtBt.

end if
end for
Return: W + α

∑T
t=1: t mod τ=0 AtBt.

Thus, it does not directly guarantee that the overall align-
ment of the representative gradients, defined as the differ-
ence between a client’s updated model and the global model
after one round of training, would exhibit the same behav-
ior. Further analysis is needed, but we leave this for future
research.

4. Federated Low-Rank Update (FedLoRU)
Algorithm

Consider a federated learning system with K clients, where
each client k has its own loss function f (k) : Rm×n → R.
The server aims to find a global model W ∈ Rm×n

that minimizes the aggregated loss function f(W ) =∑K
k=1 p

(k)f (k)(W ), where p(k) is the weight of client k.

Fedeated low-rank update algorithm Our theoretical
analysis suggests that local Hessians exhibit a more com-
plex loss landscape, which can lead to potential gradient
divergence across local clients. Low-rank updates help
align client updates along shared directions, thereby reduc-
ing client discrepancies. Building on this insight, FedLoRU
constraints clients’ local updates to low-rank to enhance the
communication efficiency and improve client alignment.

Analogous to the LoRA (Hu et al., 2021) approach1, at
each iteration, client k holds a frozen local copy of the
global model W and performs local training to find low-
rank matrices A(k)

t ∈ Rm×r and B
(k)
t ∈ Rr×n by solving:

1While we use a low-rank factorized model, alternatives like
LoKr (Edalati et al., 2022) or LoHa (Hyeon-Woo et al., 2021) can
be employed, differing only in the factorization scheme but based
on the same principles.

A
(k)
t , B

(k)
t = argmin

A, B
f (k)(W + αAB) (12)

where α is a fixed scaling hyperparameter. At the end
of each iteration, the server collects A

(k)
t and B

(k)
t and

aggregates them by averaging: At =
∑

k∈KM
p(k)A

(k)
t ,

Bt =
∑

k∈KM
p(k)B

(k)
t where KM is the set of partici-

pating clients. After the aggregation, the server broadcasts
At and Bt to the clients, who continue local training using
these matrices as starting A and B.

Unlike LoRA, FedLoRU periodically accumulates low-rank
updates into the global model after aggregation to achieve a
higher-rank global model. Clients subsequently update their
local copies of the global model by W ← W + αAtBt.
When low-rank updates are accumulated every τ rounds
from the initial global model W , the final global model at
round T is WT = W +

∑T
t=1

t mod τ=0
AtBt.

We average each matrix A and B individually, but acknowl-
edge that alternative low-rank approaches, such as freezing
one factor or alternating updates, may offer different mathe-
matical justifications. In practice, however, we have found
that our chosen scheme is the most effective among them.
Furthermore, since our primary objective is to demonstrate
the practicality and implicit regularization effect of low-rank
updates, we defer a deeper investigation of these alternatives
to future work.

FedLoRU for Fine-tuning For fine-tuning tasks, Fed-
LoRU retains a series of low-rank matrices alongside the
frozen pre-trained model. Although storing multiple low-
rank matrices requires more memory than storing a single
matrix, their size remains significantly smaller than that of
the original model. This enables a modular, plug-and-play
approach where low-rank matrices can be easily integrated
with the pre-trained model. Consequently, FedLoRU main-
tains the same level of flexibility and extensibility as LoRA.
The detailed fine-tuning algorithm is provided in the Ap-
pendix B.1.

Practical Advantages FedLoRU enables training a
higher-rank global model alongside low-rank local updates.
With each accumulation of low-rank update matrices, the
global model’s rank is incrementally enhanced, enabling the
initiation of new learning phases. Moreover, by constraining
updates to a low-rank subspace, FedLoRU implicitly reg-
ularizes local training, aligning local updates along major
directions and reducing client divergence. Such regular-
ization addresses one of the most significant challenges in
federated learning: performance degradation when scaling
to many clients.

FedLoRU also reduces communication overhead from
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Table 1: Top-1 test accuracy comparison with different
communication-efficient federated learning methods under
various FL settings. The parameter ratio refers to the pro-
portion of trainable parameters in the model compared to
the full-rank model used in FedAvg and it implies the rank.

(a) Fashion-MNIST

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 44% 33% 22% 44% 33% 22% 44% 33% 22%
FedLoRA 91.22 90.29 90.15 88.63 88.14 88.01 73.89 74.00 73.19
FedHM 91.16 91.10 90.94 89.43 89.37 88.86 85.15 85.45 85.33
FedLoRU 91.25 91.16 90.59 89.01 88.88 88.37 85.33 80.02 80.17

(b) CIFAR-10

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 41% 31% 21% 41% 31% 21% 41% 31% 21%
FedLoRA 91.65 88.96 89.35 79.48 85.71 85.06 69.60 66.13 67.61
FedHM 90.76 90.32 90.77 81.41 81.58 82.12 70.55 66.39 65.48
FedLoRU 92.43 90.71 90.85 81.46 86.01 86.10 75.19 69.71 67.88

(c) CIFAR-100

Setting IID - #clients=20 IID - #clients=100 NonIID - #clients=20

Param Ratio 41% 31% 21% 41% 31% 21% 41% 31% 21%
FedLoRA 65.53 57.36 55.14 53.79 52.20 51.20 14.41 10.58 12.97
FedHM 59.43 58.40 58.52 43.35 41.84 41.62 16.88 15.04 14.13
FedLoRU 66.81 60.78 61.42 57.96 53.25 53.53 16.46 15.70 14.52

Kmn to Kr(m + n) when r ≪ m or r ≪ n. Addi-
tionally, since no compression process is involved, there
is no additional computation compared to conventional
compression-based communication-efficient federated learn-
ing algorithms.

5. Experiments
In this section, we extensively evaluate FedLoRU in both
pre-training and fine-tuning and demonstrate the benefits of
low-rank updates in scenarios with a large number of clients.
We first provide the experiment setup, then move on to the
performance evaluation.

5.1. Experiment setup

Datasets and Baseline Algorithms We evaluate our pro-
posed algorithms on four datasets: Fashion MNIST (Xiao
et al., 2017), CIFAR-10, CIFAR-100 (Krizhevsky & Hin-
ton, 2009), and Alpaca (Taori et al., 2023). ResNet-10 and
ResNet-18 (He et al., 2016) are used for the image datasets,
and LLaMA2-3B (Touvron et al., 2023) is used for fine-
tuning on Alpaca. For the image datasets, we allocated
10,000 samples each for the validation and test sets, while
for the Alpaca dataset, we partitioned the data into train-
ing, validation, and test sets consisting of 48,000, 2,000,
and 2,000 samples, respectively. We compare FedLoRU
with several benchmarks: FedAvg (McMahan et al., 2017),
the standard federated learning algorithm that trains full-
rank models; FedLoRA (Zhang et al., 2023), which trains

Figure 2: The relative difference in test accuracy between
two algorithms is measured by the number of clients. The
relative difference of Alg1 to Alg2 is defined as Alg1−Alg2

Alg1
.

For detailed numbers, see Table 6.

Figure 3: Evaluating different low-rank federated learning
algorithms in terms of the communication cost to achieve
target test accuracy. Here, “X” indicates that the algorithm
did not reach the target accuracy.

low-rank modules without accumulating low-rank updates;
and FedHM (Yao et al., 2021), the prior state-of-the-art in
communication-efficient federated learning.

Implementation During pre-training on the image
datasets, we vary the number of clients between 20 and
400, sampling 50% of clients per round, as is standard in the
FL literature, with each client training for 5 local epochs.
For fine-tuning the language model, we use 10 clients with
a 50% participation and 1 local epoch. The selection of
local epochs balances the trade-off between communication
overhead and potential performance degradation. Learning
rates and accumulation cycles are selected via grid search,
and different rank configurations are tested for FedHM,
FedLoRA, and FedLoRU. In fact, while we use FedAvg
as the training scheme, FedLoRU techniques can be eas-
ily integrated into other federated learning schemes such
as FedAdam and FedAdagrad (Reddi et al., 2020). Model
parameters are initialized following LoRA best practices,
Kaiming initialization (He et al., 2015) for A-matrix, and
zeros for B-matrix. For full details of the implementation,
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including the selection of parameters such as α, τ , and T ,
as well as their sensitivity, see Appendix C. We run each
setting 3 times and the numbers reported in the tables are
averages with very low standard deviation (¡ 0.005).

In the statistically heterogeneous setting, we generate dis-
joint non-IID client data using a Dirichlet distribution,
Dir(ψ), with a concentration parameter ψ set to 0.5, as
described in (Hsu et al., 2019).

5.2. Performance Evaluation

Performance of Pre-training We evaluate the Top-1 ac-
curacy of models with varying parameter sizes in both IID
and Non-IID scenarios across different federated learning
configurations. Table 1 shows the performance of FedLoRU
and baseline algorithms. The standard deviation for each set-
ting is relatively small in the IID scenario, with a maximum
value of 0.382. In contrast, the non-IID setting exhibits a
relatively higher standard deviation, with a maximum of
0.969. However, these variations do not impact the overall
comparison between the algorithms.

In our experimental evaluation, FedLoRU consistently
achieves competitive or superior accuracy compared to Fe-
dAvg, whose results can be found in Appendix E. Although
FedLoRU’s accuracy is slightly lower than FedAvg’s in
most settings, the difference is minimal given the significant
reduction in parameters, with at most a 5% decrease and
typically only a 1-2% difference. Notably, in the CIFAR-10
and CIFAR-100 IID settings with 100 clients, FedLoRU
surpasses FedAvg. Overall, FedLoRU achieves the best ac-
curacy in 20 out of 27 cases and demonstrates improvements
over FedHM ranging from -6% to 33.7%. Additionally, Fed-
LoRU consistently outperforms FedLoRA, highlighting the
effectiveness of accumulating low-rank updates. The client
regularization effect of FedLoRU, as predicted by our theo-
retical analysis, suggests that using client-side low-rank up-
dates is particularly beneficial in environments with a large
number of clients. This benefit is evident in experiments un-
der IID conditions with 100 clients, where FedLoRU attains
the highest accuracy among the tested methods.

Scalability and Performance of FedLoRU in Large-
Client Federated Learning Table 6 and Figure 2 compare
FedAvg and FedLoRU across varing number of clients. As
the number of clients increases, the scalability of the algo-
rithm becomes a crucial factor. Our experiments show a
sharp decline in FedAvg’s performance, demonstrating its
difficulty in maintaining accuracy as the number of clients
grows.

In contrast, FedLoRU and FedLoRA outperform FedAvg
when the number of clients exceeds 100 and 200, respec-
tively. This trend is further reinforced in settings with a
lower participation ratio, as shown in Table 7. Furthermore,

Figure 4: Loss curve of FedLoRU and FedLoRA for fine-
tuning LLaMA2-3B.

the performance gap between low-rank algorithms and Fe-
dAvg continues to expand as K increases. These findings
emphasize that constraining updates to a low-rank subspace
is particularly beneficial in federated learning environments
with a large number of clients, and FedLoRU provides the
most effective strategy among the compared low-rank ap-
proaches.

Performance of LLM Fine-tuning Figure 4 presents the
loss curves of FedLoRA and FedLoRU during fine-tuning
of the LLaMA2-3B model on the Alpaca dataset. The train
loss curves show that both algorithms achieve similar con-
vergence rates, with minimal differences in training opti-
mization. However, a notable distinction emerges in the
test loss results, where FedLoRU consistently outperforms
FedLoRA after the 25th communication round.

In this fine-tuning experiment, we accumulate the results
every 15 communication rounds. Notably, despite FedLoRU
performing an additional accumulation at round 30, the
test loss does not show any further improvement. This
suggests that beyond a certain point, further accumulation
may not necessarily enhance the model’s generalization
performance.

6. Conclusion
In this paper, we theoretically show that client-side optimiza-
tion exhibits a higher-rank structure compared to server-side
optimization and hypothesize that using low-rank updates in
client-side optimization can promote an implicit regulariza-
tion effect across clients. We are the first to establish a theo-
retical foundation supporting the use of low-rank updates
in federated learning. Our proposed algorithm, FedLoRU,
achieves comparable performance to FedAvg while signifi-
cantly reducing the number of communicated parameters.
Moreover, as the number of clients increases, FedLoRU con-
sistently outperforms FedAvg, highlighting its scalability
and effectiveness in large-scale federated learning environ-
ments.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of the Main Theorems
In this section, we provide proofs of Proposition 3.1, Theorem 3.2, and Proposition A.4. We begin by presenting some
lemmas that are required for our analysis and then proceed to prove the propositions and the theorem.

Lemma A.1 (Theorem 2.2 from (Pielaszkiewicz & Singull, 2015)). Let µn be a sequence of probability measures on R and
let gµn

denote the Stieltjes transform of µn. We have

a) if µn → µ weakly, where µ is a measure on R, then gµn
(z)→ gµ(z) pointwise for any z ∈ {z ∈ C : z = u+ iv, v > 0}

b) if gµn(z)→ g(z) pointwise, for all z ∈ {z ∈ C : z = u+ iv, v > 0}, then there exists a unique non-negative and finite
measure such that g = gµ and µn → µ weakly.

Lemma A.2 (cf. (Capitaine, 2013)). Let XN be an N × N random real-symmetric Wigner matrix, and let D be a
N ×N deterministic symmetric matrix with uniformly bounded operator norm ∥D∥ in N . Let µ̂X , µ̂D be the empirical
spectral measures of the sequence of matrices X,D and assume there exist deterministic limit measures µX , µD. Then
H = X +D has a limiting spectral measure and is given by the free convolution µX ⊞ µD.

Lemma A.2 states that in our additive perturbed model HN (hR, ωR) = Htrue(h
R, ωR) + ϵRN , the matrix HN (hR, ωR) has

a limiting spectral measure given by the free additive convolution µν ⊞ µϵRN
, where µν is the limiting spectral measure

of Htrue(h
R, ωR) and µϵRN

corresponds to the limiting spectral measure of ϵRN . The subsequent lemma, Weyl’s inequality,
examines the changes to eigenvalues of an Hermitian matrix that is perturbed.

Lemma A.3 (Weyl’s inequality). For Hermitian matrices A,B ∈ Cn×n and i, j ∈ {1, 2, · · · , n},

λi+j−1(A+B) ≤ λi(A) + λj(B), i+ j ≤ n+ 1, (13)
λi+j−n(A+B) ≥ λi(A) + λj(B), i+ j ≥ n+ 1, (14)

where λi(D) is i-th eigenvalue of D.

A.1. Proof of the Richness of Ω(θ1, · · · , θk).

In our theoretical analysis, we show the difference in stable rank between the Hessians of a server and a client eventually
becomes positive as dimension R approaches infinity within the space of Ω(θ1, · · · , θk). In this section, we discuss about
the richness of Ω(θ1, · · · , θk) and characteristics of ΩR(θ1, · · · , θk). They are defined as:

ΩR(θ1, · · · , θk) = {(hR, ωR) : Htrue(h
R, ωR) has non-zero eigenvalues θ1, · · · , θk}, (15)

Ω(θ1, · · · , θk) =
⋃
R

ΩR(θ1, · · · , θk). (16)

In fact, the set of all possible pairs (hR, ωR) is represented by the union over all dimensionsR, integers k ≤ R, and non-zero
real values θ1, · · · , θk as follows:

∞⋃
R=1

{(hR, ωR) : any pair (hR, ωR) of dimension R} =
∞⋃

R=1

R⋃
k=1

⋃
(θ1,··· ,θk)∈Rk

ΩR(θ1, · · · , θk).

Thus, for any given pair (hR, ωR), there exist θ1, · · · , θk such that (hR, ωR) ∈ ΩR(θ1, · · · , θk). According to the following
proposition, either the set Ω(θ1, · · · , θk) is empty or there exist infinitely many values of R for which ΩR(θ1, · · · , θk) ̸= ∅.

Proposition A.4. Let θ1, · · · , θk be fixed non-zero real numbers, and suppose there exists R̃ > k such that ΩR̃(θ1, · · · , θk)
is non-empty. Then ΩR(θ1, · · · , θk) is non-empty for all R ≥ R̃.

Proof. To establish the proposition, it suffices to demonstrate that ΩR̃(θ1, · · · , θk) ̸= ∅ implies ΩR̃+1(θ1, · · · , θk) ̸= ∅. To
this end, let (hR̃, ωR̃) ∈ ΩR̃(θ1, · · · , θk). Our objective is to show that there exists (hR̃+1, ωR̃+1) ∈ ΩR̃+1(θ1, · · · , θk).

12
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To construct a prediction function hR̃+1 and a weight ωR̃+1 of dimension R̃+ 1 such that the true Hessian retains the same
non-zero eigenvalues, we define hR̃+1 : Rdx × RR̃+1 → Rdy and ωR̃+1 ∈ RR̃+1 as

hR̃+1(x;ω) = h̃R̃+1(x;ω), ∀x ∈ Rdx ,∀ω ∈ RR̃+1, (17)

ωR̃+1 = (ωR̃, 0) (18)

where h̃R̃+1 : Rdx × RR̃+1 → Rdy is defined as

h̃R̃+1(x;ωR̃+1) = h̃R̃+1(x; (ωR̃, 0)) = hR̃(x;ωR̃) (19)

which is independent of the last variable z ∈ R for all ω ∈ RR. Expanding the Hessian of the loss function at ωR̃+1 for any
(x, y) ∼ ψ, we obtain

∇2
ωℓ(h

R̃+1(x;ωR̃+1), y) = Jω(h
R̃+1(x;ωR̃+1))T∇2

yℓ(h
R̃+1(x;ωR̃+1), y)Jω(h

R̃+1(x;ωR̃+1))

+

dy∑
i=1

∂ℓ

∂yi
(hR̃+1(x;ωR̃+1), y) · ∇2

ωh
R̃+1
i (x;ωR̃+1)

(20)

where hR̃+1 = [hR̃+1
1 , · · · , hR̃+1

dy
]T and Jω(h

R̃+1(x;ωR̃+1)) is the Jacobian of the function hR̃+1 with respect to R + 1

dimensional input ω. Then, by the definition of hR̃+1 and ωR̃+1, we have:

hR̃+1(x;ωR̃+1) = hR̃(x;ωR̃), (21)

Jω(h
R̃+1(x;ωR̃+1)) =

Jω(h
R̃(x;ωR̃)) 0

 , (22)

∇2
ωh

R̃+1
i (x;ωR̃+1) =

∇2
ωh

R̃
i (x;ω

R̃) 0

0

 , ∀i. (23)

Substituting these expressions into the expanded Hessian equation (20), we conclude that ∇2
wℓ(h

R̃+1(x;ωR̃+1), y) is
identical to ∇2

wℓ(h
R̃(x;ωR̃), y) for any (x, y) ∼ ψ except for a final zero row and column. Thus, (hR̃+1, ωR̃+1) and

(hR̃, ωR̃) have the same true Hessian, except for the zero-row and the zero-column, which have no impact on the non-zero
eigenvalues of the Hessian. It follows that (hR̃+1, ωR̃+1) ∈ ΩR̃+1(θ1, · · · , θk).

For example, if we consider feedforward neural networks as prediction functions, one can easily construct a larger neural
network that maintains the same non-zero eigenvalues by adding an additional neuron with a single connection to a neuron
in the previous layer. This additional neuron does not affect the final output, thereby preserving the desired eigenvalue
properties.

A.2. Proof of Proposition 3.1

Numerous studies (Benaych-Georges & Nadakuditi, 2011; 2012; Chen et al., 2021; Péché, 2006) have investigated the
eigenvalue behavior of perturbed matrices. In this proposition, we analyze the limiting eigenvalues of a perturbed random
matrix when the perturbation is given by a Wigner matrix and the original matrix has fixed eigenvalues.

To prove Proposition 3.1, we decompose the eigenvalue analysis into two distinct parts. First, we demonstrate that the i-th
eigenvalues, where i ∈ {p+ 1, · · · , P − q − 1}, converge to the upper or lower bounds of the spectral density of µN . Here,

13
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µN is the limiting spectral density of ϵRN . This portion of the proof parallels the approach employed by (Benaych-Georges &
Nadakuditi, 2011). Second, we show that the remaining eigenvalues converge to the Stieltjes transformation. This part of
the proof follows the methodology outlined by (Baskerville et al., 2022).

Proof. In this proof, we drop dependency on (hR, ωR) and simplify the notation by representing HN (hR, ωR) and
Htrue(h

R, ωR) as HR
N and HR

true, respectively. Let us consider λi(HR
N ) for the index range p < i < R − q. Applying

Lemma A.3, we obtain

λi(H
R
N ) ≤ λ1+i−j(H

R
true) + λ1+i−k(ϵ

R(N)), i = j + k − 1 ≤ R, j, k ∈ {1, · · · , R}, (24)

λi(H
R
N ) ≥ λR+i−j(H

R
true) + λR+i−k(ϵ

R(N)), i = j + k −R ≥ 1, j, k ∈ {1, · · · , R}. (25)

By letting k = 1 + p in (24) and k = R− q in (25), we derive

λi(H
R
N ) ≤ λ1+i−j(H

R
true) + λi−p(ϵ

R(N)), i = j + p ≤ R, j ∈ {1, · · · , R}, (26)

λi(H
R
N ) ≥ λR+i−j(H

R
true) + λi+q(ϵ

R(N)), i = j − q ≥ 1, j ∈ {1, · · · , R}. (27)

By substituting i− j = p in (26) and i− j = −q in (27), and utilizing the facts that λ1+p(H
R
true) = 0 and λR−q(H

R
true) = 0,

we deduce

λi+q(ϵ
R
N ) ≤ λi(HR

N ) ≤ λi−p(ϵ
R
N ), ∀i ∈ {1, · · · , R}, (28)

where λk(ϵRN ) = −∞ if k > R, and +∞ if k ≤ 0. Additionally, since ϵRN has the limiting spectral density µN and LN , UN

are lower and upper bounds of µN , we have, for all i ≥ 1 fixed,

lim inf
R→∞

λi(ϵ
R
N ) ≥ UN and lim sup

R→∞
λR+1−i(ϵ

R
N ) ≤ LN , (29)

λ1(ϵ
R
N )→ UN and λR(ϵ

R
N )→ LN . (30)

From these relations, it follows that for any fixed i ≥ 1, λi(ϵRN ) converges to UN and λR+1−i(ϵ
R
N ) converges to LN as

R→∞. By applying (29) in (28), we obtain, for all fixed i ≥ 1,

lim inf
R→∞

λi(H
R
N ) ≥ UN and lim sup

R→∞
λi(H

R
N ) ≤ LN (31)

By combining (28), (30), and (31), for all i > p (respectively, i ≥ q) fixed, we have

λi(H
R
N )→ UN (respectively, λR−i(H

R
N )→ LN ). (32)

Next, we aim to prove the behavior of the remaining eigenvalues λi(HR
N ) for i ∈ {1, · · · , p, R− q + 1, · · ·R}. Note that,

since p + q ≪ R when R is sufficiently large, the limiting spectral density of HR
true converges to ν = δ0. Furthermore,

because XR is a Wigner matrix, its limiting spectral density is given by the semicircular distribution, denoted by µ.

Let us consider λi(HR
N ) where i ≤ p or i ≥ R− q. According to Lemma A.2, the limiting spectral density µHR

N
of HR

N

is given by µN ⊞ ν, where µN is the limiting spectral density of ϵRN . By Lemma A.1, the Stieltjes transform gµ
HR

N

(z)

converges pointwise to gν⊞µN
(z) for any z ∈ {z : z ∈ C, z = u+ iv, v > 0}. Consequently, we have:

ĝHR
N
(z) = gµ

HR
N

(z) + o(1)

= gµN⊞ν(z) + o(1)

= gν(k(z)) + o(1)

= ĝHR
true
(k(z)) + o(1),

(33)

where k is the subordination function such that gµN⊞ν(z) = gν(k(z)).
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Let λ ∈ R\supp(µN ⊞ ν) be an eigenvalue of HR
N . Then ĝHR

N
has a singularity at λ, and thus ĝHR

true
must also have a

singularity at k(λ). Thus, for any R, this singularity persists, implying that k(λ) must correspond to one of the outlier
eigenvalues of HR

N . In other words, θi is an outlier eigenvalue of HR
true if and only if there exists an eigenvalue λ of HR

N in
R\supp(µN ⊞ ν) such that k(λ) = θi. Thus, the family of the outliers of HR

N can be expressed as

{k−1(θj) : k
−1(θj) ∈ R\supp(µN ⊞ ν)}. (34)

Note that supp(µN ⊞ ν) = supp(µN ⊞ δ0) = supp(µN ). Our next goal is to determine the form of k−1(θj). From the
subordination function relation, we have:

k−1(θ) = g−1
µN⊞ν(gν(θ))

= RµN
(gν(θ) + g−1

ν (gν(θ))

= RµN
(1/θ) + θ.

(35)

Note that by the definition of Stieltjes transformation andR-transform, we have gν(θ) = gδ0(θ) = 1/θ.

Let m(µ)
n denote the n-th moment of a distribution µ, and let C(µ)

n denote the n-th cumulant of µ. The relationship between
m

(µ)
n and C(µ)

n is given by (Anderson et al., 2010) as

m(µ)
n =

n∑
r=1

∑
0≤i1,··· ,ir≤n−r
i1+···+ir=n−r

C(µ)
r

[
Πr

j=1m
(µ)
ij

]
. (36)

Using the scaling property of moments, mµN
n = snNm

µ
n, we can derive the corresponding scaling relation for the cumulants

as C(µN )
n = snNC

(µ)
n . Consequently, theR-transform exhibits the scaling property

RµN
(θ) = sNRµ(sNθ). (37)

Finally, we have an expression for the outliers of HR
N as

k−1(θ) = sNRµ(sN/θ) + θ. (38)

SinceR-transform of a semicircle law µ is given byRµ(x) = σ2x, we have k−1(θ) = θ +
σ2s2N

θ .

A.3. Proof of Theorem 3.2

Proof. Define the sets PN = {i ≤ p : g−1
N (θi) > UN} = {i ≤ p : λi(H

R
N ) → g−1

N (θi)} and QN = {i > p : g−1
N (θi) <

LN} = {i > p : λi(H
R
N ) → g−1

N (θi)}, which represent the indices of eigenvalues λi(HR
N ) converging to g−1

N (θi). Let
Nu = |{i : λi(HR

N ) → UN}| and Nl = |{i : λi(HR
N ) → LN}| denote their cardinalities of the set of indices whose

corresponding limiting eigenvalues converge to UN and LN , respectively. Similarly, define PM , QM , Mu, and Ml for HR
M

analogously.

It is possible that g−1
N (θi) ≤ UN for all i ∈ {1, · · · , p} or g−1

N (θi) ≥ LN for all i ∈ {p+ 1, · · · , p+ q} . In this case, we
can just let PN = ∅ or QN = ∅, respectively.

Define θ0 = θ1 ·1|θ1|≥|θp+q|+θp+q ·1|θ1|<|θp+q| to represent the limiting eigenvalue based on the larger magnitude between
θ1 and θp+q . Using the limiting eigenvalues of HR

N , define the estimated stable rank as:

ˆsrank(HR
N ) =

∑
j∈PN∪QN

g−1
N (θj)

2

g−1
N (θ0)2

+Nu
U2
N

g−1
N (θ0)2

+Nl
L2
N

g−1
N (θ0)2

. (39)
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Similarly, ˆsrank(HR
M ) is defined in the same manner. By Proposition 3.1, it follows that

∣∣∣srank(HR
N )− ˆsrank(HR

N )
∣∣∣→ 0

and
∣∣∣srank(HR

M )− ˆsrank(HR
M )

∣∣∣→ 0. Consequently, we have∣∣∣(srank(HR
M )− srank(HR

N )
)
−

(
ˆsrank(HR

M )− ˆsrank(HR
N )

)∣∣∣→ 0. (40)

Given that UN < UM and LN > LM , it follows that PN ⊆ PM and QN ⊆ QM . Furthermore, since U2
N = L2

N , by
matching the indices in ˆsrank(HR

N ) and ˆsrank(HR
M ), we can express the difference between the limiting stable rank as

ˆsrank(HR
M )− ˆsrank(HR

N ) =
∑

j∈PN∪QN

(
g−1
M (θj)

2

g−1
M (θ0)2

−
g−1
N (θj)

2

g−1
N (θ0)2

)

+
∑

j∈(Pc
N∩PM )∪(Qc

N∩QM )

(
g−1
M (θj)

2

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)

+ (Mu +Ml)

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
.

(41)

(i) We begin by showing that the first summation term,
∑

j∈PN∪QN

(
g−1
M (θj)

2

g−1
M (θ0)2

− g−1
N (θj)

2

g−1
N (θ0)2

)
, is positive and increasing with

respect to M . To achieve this, we analyze the individual term Fj =
g−1
M (θj)

2

g−1
M (θ0)2

− g−1
N (θj)

2

g−1
N (θ0)2

for j ∈ PN ∪ QN , which appears
in the first summation of (41).

Expanding Fj and factoring the numerator, we have

Fj =
g−1
M (θj)

2g−1
N (θ0)

2 − g−1
N (θj)

2g−1
M (θ0)

2

g−1
M (θ0)2g

−1
N (θ0)2

=

(
g−1
M (θj)g

−1
N (θ0) + g−1

N (θj)g
−1
M (θ0)

) (
g−1
M (θj)g

−1
N (θ0)− g−1

N (θj)g
−1
M (θ0)

)
g−1
M (θ0)2g

−1
N (θ0)2

Substituting g−1
M (θ) = θ +

σ2s2M
θ and g−1

N (θ) = θ +
σ2s2N

θ and simplifying, we can express the difference as

g−1
M (θj)g

−1
N (θ0)− g−1

N (θj)g
−1
M (θ0) =

(
θj +

σ2s2M
θj

)(
θ0 +

σ2s2N
θ0

)
−

(
θj +

σ2s2N
θj

)(
θ0 +

σ2s2M
θ0

)
= σ2(s2M − s2N )

(
θ0
θj
− θj
θ0

)
.

Thus, Fj becomes

Fj =
g−1
M (θj)g

−1
N (θ0) + g−1

N (θj)g
−1
M (θ0)

g−1
M (θ0)2g

−1
N (θ0)2

· σ2(s2M − s2N )

(
θ0
θj
− θj
θ0

)
. (42)

For the sign analysis, the term g−1
M (θj)g

−1
N (θ0) + g−1

N (θj)g
−1
M (θ0) takes the sign of θ0θj , as the sign of g−1

M (θ) and g−1
N (θ)

are dependent of the sign of θ. The difference s2M−s2N is positive, and the term θ0
θj
− θj

θ0
also has the sign of θ0θj . Combining

these observations, the overall sign of Fj is positive because all contributing terms either maintain a positive sign or do not
introduce a sign change. Further, since g−1

M (θj) ≥ UM for j ∈ PM or g−1
M (θj) ≤ LM for j ∈ QM , a lower bound for Fj

can be established as follows:

Fj ≥
8σ4sMsN (s2M − s2N )

g−1
M (θ0)2g

−1
N (θ0)2

·
∣∣∣∣θ0θj − θj

θ0

∣∣∣∣ . (43)
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To show that the first summation term
∑

j∈PN∪QN
Fj is a decreasing function with respect to M , we compute the derivative

of Fj with respect to M . The derivative can be expressed as

∂Fj

∂M
=

∂Fj

∂sM
· ∂sM
∂M

=
4σ2sM

(
θ20 − θ2j

)
θ0θj

·
g−1
M (θj)

g−1
M (θ0)3

· ∂sM
∂M

(44)

Since sM is a decreasing function of M , it follows that ∂sM
∂M < 0. Additionally, the term

4σ2sM(θ2
0−θ2

j )
θ0θj

· g−1
M (θj)

g−1
M (θ0)3

is positive

as same way in the sign analysis. Consequently, the product is negative, implying ∂Fj

∂M < 0. This shows that Fj decreases
with M . Therefore, the first summation term, which is a sum of such

∑
j∈PN∪QN

Fj is a decreasing function of M .

(ii) We next show the lower bound of remaining terms
∑

j∈(Pc
N∩PM )∪(Qc

N∩QM )

(
g−1
M (θj)

2

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
+ (Mu +

Ml)
(

U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
is positive and decreases with M . Since g−1

M (θj) ≥ UM for j ∈ (Pc
N ∩ PM ) ∪ (Qc

N ∩QM ), it
follows that ∑

j∈(Pc
N∩PM )∪(Qc

N∩QM )

(
g−1
M (θj)

2

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
+ (Mu +Ml)

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)

≥
∑

j∈(Pc
N∩PM )∪(Qc

N∩QM )

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
+ (Mu +Ml)

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)

= BN

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
,

(45)

where BN = |{i : λi(H
R
N ) → UN or LN}|. Now consider the difference U2

M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

. By expanding and
simplifying, we have

U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

=
U2
Mg

−1
N (θ0)

2 − U2
Ng

−1
M (θ0)

2

g−1
M (θ0)2g

−1
N (θ0)2

=
4σ2s2M

(
θ0 + σ2s2N/θ0

)2 − 4σ2s2N
(
θ0 + σ2s2M/θ0

)2
g−1
M (θ0)2g

−1
N (θ0)2

=
4σ2

(
θ20(s

2
M − s2N ) + σ4s2Ms

2
N

(
s2N/θ

2
0 − s2M/θ20

))
g−1
M (θ0)2g

−1
N (θ0)2

=
4σ2(s2M − s2N )

(
θ20 − σ4s2Ms

2
N/θ

2
0

)
g−1
M (θ0)2g

−1
N (θ0)2

.

(46)

Given the assumption that θ20 ≥ σ2s2M > σ2sMsN , the numerator is positive, ensuring that (46) is positive. To establish
that this bound decreases with M , we compute the derivative with respect to M :

∂

∂M

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
=

∂

∂sM

(
U2
M

g−1
M (θ0)2

− U2
N

g−1
N (θ0)2

)
· ∂sM
∂M

=
2UM (UM )′g−1

M (θ0)
2 − 2g−1

M (θ0)(g
−1
M (θ0))

′U2
M

g−1
M (θ0)4

· ∂sM
∂M

=
4σUMg

−1
M (θ0)− 4σ2sMU

2
Mg

−1
M (θ0)/θ0

g−1
M (θ0)4

· ∂sM
∂M

=
4σUM (θ20 − σ2s2M )

θ0g
−1
M (θ0)3

· ∂sM
∂M

.

(47)

Since θ20 ≥ σ2s2M and ∂sM
∂M < 0, the derivative is negative, indicating that the lower bound of (45) is a decreasing function

of M .
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By (i) and (ii), the difference in the limiting stable rank between HR
N and HR

M is

ˆsrank(HM )− ˆsrank(HN ) ≥ s2M − s2N
g−1
M (θ0)2g

−1
N (θ0)2

 ∑
j∈PN∪QN

8σ4sMsN

∣∣∣∣θ0θj − θj
θ0

∣∣∣∣+ 4σ2BN

(
θ20 −

σ4s2Ms
2
N

θ20

) , (48)

thus it is positive and its lower bound is a decreasing function of M .

A.4. Proof of Theorem 3.3

We rearrange the indices such that eigenvalues θ1, · · · , θp+q of HR
true satisfy |θ1| ≥ · · · ≥ |θp+q|. Let vi be the unit-norm

eigenvector associated with the eigenvalue θi ofHR
true, and let u(k)i be the unit-norm eigenvector of H(k)

N corresponding to the
eigenvalue whose limiting eigenvalue is g−1

N (θi). Define U (k) be the subspace spanned by {u(k)i }. For all k ∈ {1, · · · ,K},
the dimension of U (k) is identical for each client and is denoted as r̃ = |U (k)|. Additionally, let W (k)

N = {w(k)
i }

lk
i=1 be

remaining limiting eigenvectors of H(k)
N (hR, ωR). The indices of {w(k)

i }
lk
i=1 are rearranged in descending order based on

the magnitudes of their associated singular values. We formalize the assumption stated in the main text:

Assumption A.5. {w(k)
i }

lk
i=1 are random unit-norm orthonormal vectors such that w(k)

i ⊥ U (k)
N ,∀i, and the limiting value

of expected directional derivative E[∂
w

(k)
i
f
(k)
N (hR, ωR)] have same values for all i and k.

Define ϕi =
√

1− σ2s2N
θ2
i

, and note that |⟨vi, u(k)i ⟩| → ϕ2i by (6). The following lemma provides the limiting value of the

expected inner product between eigenvectors of different clients, which is used in proving Theorem 3.3.

Lemma A.6. For any k1 ̸= k2 ∈ {1, · · · ,K} and for any i, j, the limiting value of the expected inner product between
eigenvectors of different clients k1 and k2 is as follows:

a) E
[
⟨u(k1)

i , u
(k2)
j ⟩

]
→ ϕiϕj1{i = j},

b) E
[
⟨w(k1)

i , w
(k2)
j ⟩

]
→ 0,

c) E
[
⟨u(k1)

i , w
(k2)
j ⟩

]
→ 0.

Proof. Let ϕ(k)i be the angle between vi and u(k)i . By (6), ϕ(k)i → ϕi. Using this, u(k1)
i and u(k2)

j can be expressed as

u
(k1)
i = ϕ

(k1)
i vi +

√
1− (ϕ

(k1)
i )2 r

(k1)
i , (49)

u
(k2)
j = ϕ

(k2)
j vj +

√
1− (ϕ

(k2)
j )2 r

(k2)
j , (50)

where r(k1)
i and r(k2)

j are random vectors orthogonal to vi and vj , respectively. The inner product between u(k1)
i and u(k2)

j

is given by

⟨u(k1)
i , u

(k2)
j ⟩ = ⟨ϕ(k1)

i vi, ϕ
(k2)
j vj⟩+ ⟨ϕ(k1)

i vi,

√
1− (ϕ

(k2)
j )2 r

(k2)
j ⟩

+ ⟨
√
1− (ϕ

(k1)
i )2 r

(k1)
i , ϕ

(k2)
j vj⟩+ ⟨

√
1− (ϕ

(k1)
i )2 r

(k1)
i ,

√
1− (ϕ

(k2)
j )2 r

(k2)
j ⟩.

(51)

Since r(k1)
i and r(k2)

j are uniformly distributed on the subspaces orthogonal to vi and vj , respectively, all cross terms involving

r
(k1)
i and r(k2)

j average to zero asR→∞. Consequently, the expected value reduces to E
[
⟨u(k1)

i , u
(k2)
j ⟩

]
→ ϕiϕj1{i = j}.
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For eigenvectorsw(k1)
i andw(k2)

j , these are independent random vectors uniformly distributed within (U (k1))⊥ and (U (k2))⊥,
respectively, i.e., they are chosen uniformly on the sphere in (U (k1))⊥ and (U (k2))⊥. Due to the rotational symmetry of
these spaces, the expected inner product averages to zero:

E
[
⟨w(k1)

i , w
(k2)
j ⟩

]
→ 0. (52)

Similarly, since w(k1)
i ⊥ U

(k1)
N and u(k2)

j ∈ U (k2)
N , the expected inner product between w(k1)

i and u(k2)
j also averages to

zero:
E[⟨u(k1)

i , w
(k2)
j ⟩]→ 0. (53)

Now we provide the proof for Theorem 3.3.

Proof. Let αR
i = E[∂

u
(k)
i
f
(k)
N (hR, ωR)] and β = E[∂

w
(k)
i
f
(k)
N (hR, ωR)]. Since the dataset D(k)

N , ∀k ∈ {1, · · · ,K}, is
random and the eigenvector distributions are identical across clients, the expected values of the directional derivatives are
the same for all clients. The cosine similarity between two rank-r approximations of client k1 and k2 is CR

N,r(k1, k2) =

cos
(
∇f̂ (k1)

N,r ,∇f̂
(k2)
N,r

)
=

⟨∇f̂
(k1)

N,r ,∇f̂
(k2)

N,r ⟩

∥∇f̂
(k1)

N,r ∥·∥∇f̂
(k2)

N,r ∥
.

(i) For r < r̃, we can write rank-r approximation of ∇f (k1)
N (hR, ωR) and ∇f (k2)

N (hR, ωR) as

∇f̂ (k1)
N,r =

∑
i≤r

∂
u
(k1)
i

f
(k1)
N (hR, ωR)u

(k1)
i ,

∇f̂ (k2)
N,r =

∑
i≤r

∂
u
(k2)
i

f
(k2)
N (hR, ωR)u

(k2)
i .

We drop hR and ωR since the context is clear. The expectation of the cosine similarity between these two rank-r
approximations is

E [CR
N,r(k1, k2)] = E

 ⟨∑i≤r ∂u(k1)
i

f
(k1)
N u

(k1)
i ,

∑
i≤r ∂u(k2)

i

f
(k2)
N u

(k2)
i ⟩

∥∇f̂ (k1)
N,r ∥ · ∥∇f̂

(k2)
N,r ∥

 . (54)

The denominator in (59) is E
[
∥∇f̂ (k1)

N,r ∥ · ∥∇f̂
(k2)
N,r ∥

]
=

∑
i≤r(α

R
i )

2 because of the independence between client k1 and
k2. The numerator can be expressed as

E

⟨∑
i≤r

∂
u
(k1)
i

f
(k1)
N u

(k1)
i ,

∑
i≤r

∂
u
(k2)
i

f
(k2)
N u

(k2)
i ⟩


= E

∑
i≤r

∂
u
(k1)
i

f
(k1)
N ∂

u
(k2)
i

f
(k2)
N ⟨u(k1)

i , u
(k2)
i ⟩

+ E

 ∑
i ̸=j≤r

∂
u
(k1)
i

f
(k1)
N ∂

u
(k2)
j

f
(k2)
N ⟨u(k1)

i , u
(k2)
j ⟩

 (55)

By Lemma A.6, we know E
[
⟨u(k1)

i , u
(k2)
i ⟩

]
→ ϕ2i and E

[
⟨u(k1)

i , u
(k2)
j ⟩

]
→ 0 for i ̸= j, thus the numerator satisfies

∣∣∣∣∣∣E
⟨∑

i≤r

∂
u
(k1)
i

f
(k1)
N u

(k1)
i ,

∑
i≤r

∂
u
(k2)
i

f
(k2)
N u

(k2)
i ⟩

−∑
i≤r

(αR
i )

2ϕ2i

∣∣∣∣∣∣→ 0. (56)
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Therefore we have

∣∣∣∣∣E [CR
N,r(k1, k2)]−

∑
i≤r(α

R
i )

2ϕ2i∑
i≤r(α

R
i )

2

∣∣∣∣∣→ 0. (57)

Finally, we have the following term

∣∣∣∣∣E [
CR

N,r(k1, k2)− CR
N,r+1(k1, k2)

]
−

(αR
r+1)

2
∑

i≤r(α
R
i )

2(ϕ2i − ϕ2r+1)∑
i≤r(α

R
i )

2 ·
∑

i≤r+1(α
R
i )

2

∣∣∣∣∣→ 0 (58)

and here g(r) =
(αR

r+1)
2 ∑

i≤r(α
R
i )2(ϕ2

i−ϕ2
r+1)∑

i≤r(α
R
i )2 ·

∑
i≤r+1(α

R
i )2

is strictly positive since ϕ2i = 1− σ2s2N
θ2
i
≥ 1− σ2s2N

θ2
r+1

= ϕ2r+1.

(ii) For r ≥ r̃, we can write rank-r approximation of∇f (k1)
N (hR, ωR) and ∇f (k2)

N (hR, ωR) as

∇f̂ (k1)
N,r =

∑
i≤r̃

∂
u
(k1)
i

f
(k1)
N u

(k1)
i +

∑
i≤r−r̃

∂
w

(k1)
i

f
(k1)
N w

(k1)
i ,

∇f̂ (k2)
N,r =

∑
i≤r̃

∂
u
(k2)
i

f
(k2)
N u

(k2)
i +

∑
i≤r−r̃

∂
w

(k2)
i

f
(k2)
N w

(k2)
i .

By the same argument in (i), we have

E [CR
N,r(k1, k2)] = E

 ⟨∑i≤r̃ ∂u(k1)
i

f
(k1)
N u

(k1)
i +

∑
i≤r−r̃ ∂w(k1)

i

f
(k1)
N w

(k1)
i ,

∑
i≤r̃ ∂u(k2)

i

f
(k2)
N u

(k2)
i +

∑
i≤r−r̃ ∂w(k2)

i

f
(k2)
N ⟩

∥∇f̂ (k1)
N,r ∥ · ∥∇f̂

(k2)
N,r ∥

 .
(59)

and by applying Lemma A.6, we have

∣∣∣∣∣E [CR
N,r(k1, k2)]−

∑
i≤r̃(α

R
i )

2ϕ2i

(r − r̃)β2 +
∑

i≤r̃(α
R
i )

2

∣∣∣∣∣→ 0. (60)

Finally,

∣∣∣∣∣∣E [
CR

N,r(k1, k2)− CR
N,r+1(k1, k2)

]
−

β2
∑

i≤r̃(α
R
i )

2ϕ2i(
(r − r̃)β2 +

∑
i≤r̃(α

R
i )

2
)(

(r − r̃ + 1)β2 +
∑

i≤r̃(α
R
i )

2
)
∣∣∣∣∣∣→ 0 (61)

and here g(r) =
β2 ∑

i≤r̃(α
R
i )2ϕ2

i

((r−r̃)β2+
∑

i≤r̃(α
R
i )2)((r−r̃+1)β2+

∑
i≤r̃(α

R
i )2)

is strictly positive.

A.5. Discussion on the Additive Perturbed Model

In our framework, we express the perturbed Hessians as

HN (hR, ωR) = Htrue(h
R, ωR) + ϵRN ,

with the error matrices defined as ϵRN = sNX
R, where XR is a Wigner matrix.Wigner matrices have long been established

as a canonical model for random perturbations in high-dimensional settings, such as perturbations in quantum systems
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(Guhr et al., 1998; Brody et al., 1981) or as noise models in signal processing (Tulino et al., 2004), making them particularly
well-suited as error matrices in our additive perturbation model. The use of a Wigner matrix is justified by its ability to
capture intrinsic statistical fluctuations in the eigenvalues and eigenvectors, a property that has been extensively verified
both theoretically and empirically in Random Matrix Theory.

Additionally, we scale the variance of the entries of XR by σ2/R rather than σ2. This scaling is crucial because it prevents
the eigenvalues of the perturbed Hessian from diverging as the matrix dimension R increases. If a variance of σ2 were used,
the eigenvalues of HN (hR, ωR) would diverge. In practice, the loss landscape displays controlled fluctuations, and the
σ2/R scaling maintains consistency with the reasonable distribution of eigenvalues.

B. Detail of the algorithms
In this section, we provide detailed explanation of fine-tuning version of FedLoRU and introduces variants of FedLoRU to
adapt to environments with statistical and model heterogeneity by employing multiple or hierarchical low-rank updates.

B.1. FedLoRU for Fine-Tuning

In the fine-tuning version of FedLoRU, the approach deliberately avoids merging the low-rank update matrices into the
frozen pre-trained model. Instead, these low-rank matrices are stored separately, enabling a plug-and-play mechanism. This
design choice allows the pre-trained model to remain intact while the task-specific adaptations are provided solely by the
auxiliary low-rank matrices. As a result, this framework not only minimizes storage overhead and communication costs but
also maintains flexibility during fine-tuning — clients can easily swap or update the low-rank components without altering
the core model, ensuring efficient and adaptable federated learning.

B.2. Personalized Federated Low-Rank Updates (pFedLoRU)

We develop the personalized FedLoRU (pFedLoRU) algorithm to address statistical heterogeneity (non-IID) in federated
learning, building on the FedLoRU approach. The pFedLoRU algorithm enables each client k to train a personalized model
adapted to its data distribution.

Algorithm 2 pFedLoRU.

Require: model W , initial global low-rank update matrices A0,B0

Require: initial personal low-rank update matrices L0,U0

Require: scaling factors αglobal and αper, accumulation cycle τ , total round T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes At−1,Bt−1 to the clients in KM .
for each client k ∈ KM do

Local training:
Find L

(k)
t ,U

(k)
t by solving (62) starting from W + αglobalAt−1Bt−1 + αperL

(k)
t−1U

(k)
t−1.

Find A
(k)
t ,B

(k)
t by solving (63) starting from W + αglobalAt−1Bt−1 + αperL

(k)
t U

(k)
t .

Send A
(k)
t ,B

(k)
t to the server.

end for
Server aggregation: At ←

∑
k∈KM

p(k)A
(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients .
Each client k updates its local copy of the global model: W ←W + αglobalAtBt

end if
end for
Return: The final model for client k is W +

∑T
t=1: t mod τ=0 AtBt +L

(k)
T U

(k)
T .

In pFedLoRU, each client k maintains a local copy of the global model W , global low-rank matrices A(k) and B(k), and
personal matrices L(k) and U (k). The matrices A(k) and B(k) are shared with the server to update the global model, while
L(k) and U (k) are tailored to adapt to the local distribution. In each round t, client k optimizes the personal matrices for

21



Communication-Efficient Federated Low-Rank Update Algorithm and its Connection to Implicit Regularization

Eper epochs and the global matrices for Eglobal by solving

L
(k)
t , U

(k)
t = argmin

L, U
f (k)(W + αglobalAt−1Bt−1 + αperLU), (62)

A
(k)
t , B

(k)
t = argmin

Ā, B̄

f (k)(W + αglobalĀB̄ + αperL
(k)
t U

(k)
t ). (63)

Subsequently, the server collects the global update matrices A(k)
t and B

(k)
t from the clients, performs aggregation At ←∑

k∈KM
p(k)A

(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t , and broadcasts At and Bt to the clients. The clients then accumulate the

low-rank updates accordingly as in FedLoRU. If clinet k performs inference, it is based on model W + αperL
(k)
T U

(k)
T .

In pFedLoRU, the communication between the server and clients involves only the low-rank matrices A(k) and B(k), which
substantially reduces communication overhead. In practice, since the global model incorporates general knowledge from the
all clients’ dataset, and the personalized model is essentially a fine-tuned version of the global model, we typically assign
higher ranks to A(k) and B(k). Additionally, although we use the same rank for L(k) and U (k) across all clients in our
experiments, each client can, in practice, use different ranks based on the complexity and size of their local dataset. It is also
noteworthy that different ranks for A(k) and B(k) can be employed by integrating pFedLoRU and mFedLoRU.

B.3. Model-Heterogeneous Federated Low-Rank Updates (mFedLoRU)

When local clients possess varying hardware resources, it becomes impractical to use uniform low-rank matrices across
all clients. To address this issue, we develop the model-heterogeneous FedLoRU (mFedLoRU) algorithm, which employs
hierarchical low-rank updates that allows clients to use their adaptive update ranks. In mFedLoRU, at each round t, each
client k receives At−1 and Bt−1 and updates its local copy of the global model as in FedLoRU. For local training, each
client k generates and optimizes nested low-rank matrices A(k)

d A
(k)
u and B

(k)
d B

(k)
u by solving

A
(k)
d ,A(k)

u ,B
(k)
d ,B(k)

u = argmin
Ād,Āu,B̄d,B̄u

f (k)(W + α(At−1 + α
(k)
A ĀdĀu)(Bt−1 + α

(k)
B B̄dB̄u)). (64)

Here, At−1Bt−1 are the rank-r low-rank matrices, and A
(k)
d A

(k)
u and B

(k)
d B

(k)
u are rank-rA and rank-rB low-rank matrices

used to update At−1 and Bt−1. After local training, the server collects A(k)
d ,A

(k)
u , recovers the low-rank update matrix

A
(k)
t ← At−1+α

(k)
A A

(k)
d A

(k)
u , and finally aggregates At ←

∑
k∈KM

p(k)A
(k)
t−1. The same process applies for the low-rank

matrices B(k)
d and B

(k)
d .

Model-heterogeneous FedLoRU (mFedLoRU) algorithm enables each client k to utilize a rank tailored to its resource
constraints. Similar to FedLoRU, client k maintains low-rank update matrices A(k) ∈ Rm×r and B(k) ∈ Rr×n, but Each
client k decides whether to use nested low-rank updates or not. If a client opts out of nested low-rank updates, it updates its
low-rank modules like in FedLoRU. However, if client k chooses nested low-rank updates, it determines the locally adapted
rank r(k)A , r

(k)
B < r based on its resources. At each round, it initializes nested low-rank update matrices A(k)

d ∈ Rm×r
(k)
A ,

A
(k)
u ∈ Rr

(k)
A ×r and B

(k)
d ∈ Rr×r

(k)
B , B(k)

u ∈ Rr
(k)
B ×n such that A(k)

d A
(k)
u = 0 and B

(k)
d B

(k)
u = 0. After local training by

solving (64), we update client k’s original low-rank matrices as follows:

A(k) ← A(k) + α
(k)
A A

(k)
d A(k)

u , B(k) ← B(k) + α
(k)
A B

(k)
d B(k)

u . (65)

After local training, to reduce communication overhead, the client does not recover its original low-rank matrices directly.
Instead, it sends the nested low-rank matrices to the server, which recovers them into rank-r low-rank matrices A(k) ←
A+α

(k)
A A

(k)
d A

(k)
u , and B(k) ← B+α

(k)
B B

(k)
d B

(k)
u , and then performs aggregation using these rank-r low-rank matrices as

in FedLoRU. By using this strategy, the communication overhead is reduced from 2mn to r(m+n)+rA(m+r)+rB(n+r).

B.4. Personalized Federated Low-Rank Adaptation (pFedLoRA)

We outline two variants of the personalized FedLoRA algorithm here. We use these algorithms to compare our pFedLoRU.
Both versions of pFedLoRA follow a similar framework, where each client maintains a full-rank global model W and its
own personalization models L(k) and U (k).
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Algorithm 3 mFedLoRU.

Require: model W , initial low-rank update matrices A0,B0

Require: scaling factors α, α(k)
A , α

(k)
B

Require: accumulation cycle τ , total round T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes At−1,Bt−1.
for each client k ∈ KM do

Initializes nested low-rank updates A(k)
d , A(k)

u and B
(k)
d , B(k)

u .
Local training:

Find A
(k)
d , A(k)

u , B(k)
d , B(k)

u by solving (64)
starting from W + α(At−1 + α

(k)
A A

(k)
d A

(k)
u )(Bt−1 + α

(k)
B B

(k)
d B

(k)
u ).

Sends A(k)
d A

(k)
u and B

(k)
d B

(k)
u to the server.

end for
Recover rank-r low-rank updates from hierarchical low-rank updates:

A
(k)
t ← At−1 + α

(k)
A A

(k)
d A

(k)
u , B

(k)
t ← Bt−1 + α

(k)
B B

(k)
d B

(k)
u .

Server aggregation: At ←
∑

k∈KM
p(k)A

(k)
t , Bt ←

∑
k∈KM

p(k)B
(k)
t .

if t mod τ = 0 then
Server distributes At,Bt to all clients.
Each client k updates its local model: W ←W + αAtBt.

end if
end for
Return: W +

∑T
t=1: t mod τ=0 AtBt.

In pFedLoRA(1), the first variant, as suggested by (Wu et al., 2024) and other FedLoRA algorithms, the personalization
models are optimized separately from the global model. Specifically, the algorithm first optimizes the personalization
models for Eper iterations and subsequently optimizes the global full-rank model for Eglobal iterations by solving:

L
(k)
t ,U

(k)
t = argmin

L,U
f (k)(Wt−1 + αperLU), (66)

W
(k)
t = argmin

W
f (k)(W + αperL

(k)
t U

(k)
t ). (67)

However, pFedLoRA(1) has been found to be less effective compared to our modified version pFedLoRA(2). The second
variant, pFedLoRA(2), optimizes both the personalization modules and the global full-rank model simultaneously for
E = Eper + Eglobal iterations by solving:

W
(k)
t ,L

(k)
t ,U

(k)
t = argmin

W ,L,U
f (k)(W + αperLU). (68)

C. Detail of the experiment setting
In this section, we provide a detailed explanation of the experiments, including the datasets and hyperparameters used. We
use PyTorch 11.4 version and 4 TITAN Xp GPUs. Additionally, we present the experiment for pFedLoRU and mFedLoRU,
which are not included in the main text.

C.1. Datasets and Models

The federated learning experiments were performed using four datasets: Fashion-MNIST (FMNIST, (Xiao et al., 2017)),
CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and Alpaca (Taori et al., 2023). The Alpaca dataset, consisting of
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Algorithm 4 pFedLoRA.

Require: model W , initial personal low-rank update matricesL0,U0

Require: scaling factors αper, total round T
Initialize: Server sends W to each client.
for t = 1, · · · , T do

Server selects M clients KM and distributes Wt−1 and client k initializes it
as a local copy of the global model.
for each client k ∈ KM do

Local training - pFedLoRA(1):
Find L

(k)
t ,U

(k)
t by solving (66) starting from Wt−1 + αperL

(k)
t−1U

(k)
t−1.

Find W
(k)
t by solving (67) starting from Wt−1 + αperL

(k)
t U

(k)
t .

Local training - pFedLoRA(2):
Find W

(k)
t ,L

(k)
t ,U

(k)
t together by solving (68) starting from Wt−1 + αperL

(k)
t−1U

(k)
t−1.

Send W
(k)
t to the server.

end for
Server aggregation: Wt ←

∑
k∈KM

p(k)W
(k)
t .

end for
Return: The final model for client k is WT +L

(k)
T U

(k)
T .

52,000 instruction and demonstration samples, was divided into 50,000 instances for training and 2,000 for testing in our
fine-tuning experiment.

We construct datasets for clients by evenly splitting the training data among K clients in a statistically homogeneous (i.e.,
IID) federated learning setting. For the heterogeneous statistical setting, we follow the procedure outlined in (Hsu et al.,
2019), which involves applying latent Dirichlet allocation (LDA) over the dataset labels to create clients’ datasets. In this
approach, each client is assigned a multinomial distribution over the labels, from which its examples are sampled. The
multinomial distribution is drawn from a symmetric Dirichlet distribution with parameter ψ. For the non-IID setting, we use
ψ = 0.5 to simulate a severely heterogeneous environment.

C.2. Implementation and training details

Detailed implementation of FedLoRA, FedLoRU, and FedHM In FedLoRA, FedLoRU, FedHM, and their variant
algorithms, we apply low-rank factorization to the convolutional layers in ResNet-based models and to the self-attention
modules in LLaMA2-3B. Specifically, for ResNet10 and ResNet18, we factorize the convolutional layers in layer1 through
layer4, and for LLaMA2-3B, we factorize the self-attention modules in q proj, k proj, v proj, and o proj. We explore various
low-rank configurations, setting the ranks of the factorized modules to 16, 32, 64, and 128 for FedLoRA and FedLoRU. We
use rank r = 128 as the largest rank since our initial experiments showed it to have the best performance/memory trade-off.
For FedHM, since its factorization scheme differs from that of FedLoRA and FedLoRU, we determine equivalent rank
factors that yield the same number of trainable parameters as the ranks used in FedLoRA and FedLoRU.

We employ two strategies for initializing the low-rank update matrices in FedLoRU. For random initialization, as adopted
in (Hu et al., 2021), we initialize A with a random Gaussian distribution and set B to zero, ensuring that AB is zero at
the start. Alternatively, for momentum initialization, we retain the existing weights of the matrices, continuing to use the
previous low-rank update matrices. This approach leverages momentum effects as described in the ReLoRA(Lialin et al.,
2023). The scheduling of accumulations is also critical due to the varying nature of the training phases across different
rounds; in this study, we employ periodic accumulation with the accumulation cycle determined through a grid search
over the values {20, 30, 40, 50, 60, 70, 80}, though this area warrants further investigation. We assess the performance by
evaluating Top-1 test accuracy across experiments. In the non-IID setting, due to significant fluctuations in performance, we
report the average of the last five test accuracy values.

Federated learning setting The federated learning experiments were conducted using four datasets: FMNIST, CIFAR-10,
CIFAR-100, and Alpaca. The client sampling rate, representing the proportion of clients selected per communication round,
was set at 0.5 for all datasets. Each client performed 5 local epochs per communication round on the image datasets with a
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batch size of 32, while client performed 1 local epochs on Alpaca with a batch size of 16.

For training FMNIST, CIFAR-10, and CIFAR-100, we utilized stochastic gradient descent (SGD) with a momentum
of 0.9 as the local optimizer. The learning rate was selected through a grid search over 0.3, 0.2, 0.1, 0.05, 0.01, and a
Cosine-Annealing learning rate scheduler was applied throughout the training process, with a minimum learning rate of
0.001 and a cycle step set to 50 or the total number of communication rounds. For fine-tuning LLaMA2-3B, we used
AdamW (Loshchilov & Hutter, 2017) as the local optimizer, with a learning rate of 3× 10−4 and betas set to (0.9, 0.999),
without employing a learning rate scheduler.

Fine-tuning setting We assess the fine-tuning performance of FedLoRA and FedLoRU using two different ranks, 8 and
16. For the low-rank matrix factorization of LLaMA2-3B, we employ the PEFT library (Mangrulkar et al., 2022). The
percentage of trainable parameters is 0.124% for rank 8 and 0.248% for rank 16.

Personalization and model heterogeneous setting We compare pFedLoRU against pFedLoRA (Wu et al., 2024), and
for mFedLoRU, we compare with the model-heterogeneous version of FedHM. For the model heterogeneous setting, we
simulate virtual environments where each client is assigned a different nominal rank, thereby restricting them to use low-rank
update matrices of varying ranks. In particular, we tested two different model heterogeneous configurations in mFedLoRU
experiments where the clients had different ranks, denoted as r, which reflect the computational resources or constraints of
each client. For FedHM, we match the number of trainable parameters corresponding to the model with specific rank in
mFedLoRU experiments.

Table 2: Detailed model heterogeneous settings in our experiments. Both settings include total 20 clients.

Rank of a client r = 128 r = 64 r = 32 r = 16

#Clients setting 1 5 5 5 5
setting 2 - 6 6 7

The motivation behind these settings is to establish a challenging model heterogeneous environment. This is particularly
important as we observed that FedLoRU with r = 128 produces similar results to FedAvg with a full-rank model. Therefore,
these configurations were designed to test the algorithm’s adaptability under more demanding and diverse client conditions.
In addition, we set αA and αB to satisfy αA/rA = αA/rB = 1/2, as our empirical observations indicate that the choice of
α values in the range of 1/4 to 1 has minimal effect on overall performance.

C.3. Detail of the estimated stable rank experiment

We conduct an experiment to support our theoretical analysis that the Hessians of loss functions trained on smaller datasets
exhibit larger stable ranks. In this experiment, we randomly select either 50 or 500 samples from the CIFAR-100 dataset
and train a ResNet-18 model using only these 50 or 500 samples. Every 5 epochs, we compute an estimated stable rank
of the Hessian, as calculating the true stable rank is computationally challenging due to the need to determine all singular
values. Instead, we estimate the empirical spectral density using pyHessian (Yao et al., 2020), which provides the empirical
singular values σi(H) of a Hessian H and their corresponding densities p(σi), i = 1, · · · , Q. Based on this, we calculate
the estimated stable rank as follows:

ˆsrank(H) =

∑Q
i=1 p(σi) σ

2
i (H)

p(σ1) σ2
1(H)

(69)

Figure 1 shows the results of the experiment, demonstrating that the Hessians trained on the smaller dataset (n = 50)
consistently exhibits higher estimated stable ranks compared to those trained on the larger dataset (n = 500).

D. Experiment Result for pFedLoRU and mFedLoRU
We evaluate the performance of pFedLoRU and mFedLoRU on statistical heterogeneous and model heterogeneous FL
environments. Table 3 shows the performance of pFedLoRU and pFedLoRA. We use two variants of pFedLoRA, each
utilizing different optimization schemes. For a comprehensive description of pFedLoRA(1) and pFedLoRA(2), see Appendix
B.4. Under both non-IID levels (ψ = 0.1 and ψ = 0.5), pFedLoRU shows a clear advantage in terms of accuracy compared
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to pFedLoRA. In addition, despite having less than half the number of parameters, pFedLoRU consistently achieves higher
accuracy.

Table 3: Comparison of the average test accuracy across local models for pFedLoRA and pFedLoRU with varying non-
IIDness (ψ) on CIFAR100.

Algorithm #params Non-IIDness
ψ = 0.1 ψ = 0.5

pFedLoRA(1) 11.22M 45.36 42.14
pFedLoRA(2) 11.22M 47.45 42.28
pFedLoRU 4.63M 49.65 46.50

On the other hands, Table 4 shows the performanec of mFedLoRU and FedHM. FedHM outperforms mFedLoRU in both
heterogeneous settings (setting 1 and setting 2) on the CIFAR-10 dataset, indicating that FedHM handles model heterogeneity
more effectively for simpler tasks. This suggests that FedHM is better suited for less complex datasets such as CIFAR-10,
where its approach proves more efficient. However, mFedLoRU outperforms FedHM in both heterogeneous settings for the
more complex CIFAR-100 dataset, demonstrating its potential in addressing the model-heterogeneous problem in federated
learning. A key advantage of mFedLoRU is that it does not require additional computational steps, such as the weight
factorization used in FedHM, making it a more efficient solution in scenarios involving more challenging tasks.

Table 4: Comparison of test accuracy for FedHM and mFedLoRU in two model-heterogeneous settings.

Dataset Setting FedHM mFedLoRU

CIFAR-10 setting 1 88.09 84.81
setting 2 88.68 84.36

CIFAR-100 setting 1 49.84 51.16
setting 2 50.52 50.89

E. Further Discussion on Experimental Results
In this section, we present learning curve plots and additional experimental results that were not included in the main text.
Furthermore, we provide a more detailed analysis and discussion of the experimental outcomes.

E.1. Experiment Results for FedAvg

To emphasize the comparison between FedLoRU and other communication-efficient federated learning algorithms, we have
excluded the FedAvg results from the main text. The FedAvg outcomes are instead provided in Table 5.

Table 5: Top-1 test accuracy of FedAvg under different federated learning settings and datasets

Dataset FMNIST CIFAR-10 CIFAR-100

FL setting
IID - K=20 91.81 93.48 69.97
IID - K=100 90.19 85.14 55.14

NonIID - K=20 80.03 79.65 19.18

From Table 1 and Table 5, we observe that FedAvg consistently performs well across different datasets and settings, but its
performance tends to drop as the number of clients increases and in non-IID scenarios. For example, in the CIFAR-100
dataset under the IID setting with 100 clients, FedAvg achieves a test accuracy of 55.14%, while its accuracy drops
significantly to 19.18% in the non-IID setting with 20 clients. This illustrates FedAvg’s limitations in handling large client
numbers and heterogeneous data distributions.

In comparison, FedLoRU demonstrates competitive performance relative to FedAvg. While FedLoRU is at most 5% less
accurate than FedAvg in some cases, it sometimes outperforms FedAvg, particularly in scenarios with a larger number of
clients. For instance, in the CIFAR-100 IID setting with 100 clients, FedLoRU achieves a test accuracy of 57.96%, which
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surpasses FedAvg’s accuracy of 55.14%. This suggests that FedLoRU’s low-rank update approach scales better with an
increasing number of clients and is more robust in large-scale federated learning environments.

(a) FMNIST - IID - K=20 (b) FMNIST - IID - K=100

Figure 5: The test accuracy curves for FMNIST under an IID setting with K=20 and K=100.

(a) CIFAR-10 - IID - K=20 (b) CIFAR-10 - IID - K=100

Figure 6: The test accuracy curves for CIFAR-10 under an IID setting with K=20 and K=100.

(a) CIFAR-100 - IID - K=20 (b) CIFAR-100 - IID - K=100

Figure 7: The test accuracy curves for CIFAR-100 under an IID setting with K=20 and K=100.

E.2. Learning Curve Plots For IID Setting

We present the test accuracy curves for experiments conducted under a statistically homogeneous setting. Figure 5, Figure 6
and Figure 7 shows the test accuracy with respect to communication round under the IID setting. The fluctuations observed
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in the graphs are attributable to the use of a cosine-annealing learning rate scheduler.

E.3. Discussion on Communication Cost

One of the main motivation of FedLoRU is to reduce the communication cost by using low-rank updates while maintaining
reasonable performances. When the original weight matrix W ∈ Rm×n requires mn parameters to be communicated,
FedLoRU with rank r requires r(m+ n) parameters. Additionally, as we can see in Figure 5, Figure 6 and Figure 7, the
convergence speed is similar to FedAvg, resulting in much lower communication overheads.

Building on the motivation to reduce communication costs, Figure 3 compares the communication overheads across several
federated learning algorithms—FedAvg, FedHM, FedLoRA, and FedLoRU—using the CIFAR-10 and CIFAR-100 datasets.
The figure evaluates the communication cost in gigabytes (GB) required to reach specific target test accuracy (denoted as T%)
for different numbers of clients (K) and datasets. We compute the communication cost as 2 × (#clients) × (participation
rate) × (#parameters) × (parameter memory size) × (#round). It is evident that FedLoRU consistently achieves significantly
lower communication costs compared to the other methods.

E.4. Relative difference in performance in terms of the number of clients

Table 6 presents a comparison of test accuracy between FedAvg, FedLoRA, and FedLoRU across varying number of
clients, illustrating the relative performance of these algorithms as the number of clients increases. FedLoRU consistently
outperforms FedAvg when the number of clients exceeds 100, demonstrating its scalability and effectiveness in cross-
device federated learning environments. Interestingly, even FedLoRA, which does not accumulate low-rank updates as in
FedLoRU, outperforms FedAvg, particularly when the number of clients reaches 200 and above. This result suggests that
simply adopting low-rank updates in high-client FL can significantly improve performance. These findings align with our
theoretical insights, highlighting the potential benefits of leveraging low-rank structures in federated learning, even without
the accumulation strategy employed by FedLoRU.

Table 6: A comparison between FedAvg, FedLoRA, and FedLoRU accuracy across varying client numbers. The ratio is the
relative difference in accuracy between two algorithms. Here, we compute the ratio of FedLoRA and FedLoRU compared to
FedAvg. For example, ratio of FedLoRU is defined as Ratio = FedLoRU−FedAvg

FedLoRU .

FedLoRA FedLoRU

#Clients FedAvg acc ratio acc ratio

20 69.97 65.53 -0.063 66.81 -0.046
50 64.68 59.87 -0.074 62.45 -0.034
100 55.14 53.79 -0.024 57.96 +0.051
200 38.85 42.42 +0.092 44.85 +0.154
300 24.94 32.69 +0.311 36.79 +0.475
400 21.44 31.41 +0.465 35.86 +0.673

We extended our experiments to settings with a lower participation ratio and a larger number of clients. Specifically, we
examined K = 100, 200 with C = 0.1, using an IID CIFAR-100 dataset, which is more challenging than FMNIST and
CIFAR-10. For these tests, we used the ResNet18 model, applying full parameter training for FedAvg and 41% parameter
training for low-rank methods. The results, averaged over three runs with minimal standard deviation (¡ 0.005), are presented
in Table 7.

Table 7: A comparison between FedAvg, FedHM, FedLoRA, and FedLoRU accuracy for experiments under large client
numbers K = 100, 200 with lower participation ratio C = 0.1.

FedAvg FedHM FedLoRA FedLoRU
K=100 0.5382 0.5732 0.5506 0.5837
K=200 0.3885 0.4872 0.5227 0.5393

The results indicate that low-rank training methods consistently outperform full-rank training when the participation ratio
is low and the number of clients increases. Among the low-rank approaches, FedLoRU achieves the highest accuracy,
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demonstrating its effectiveness in large-scale federated learning. These findings reinforce the advantages of using low-rank
updates, particularly in settings with a large number of clients and limited participation per round.

E.5. Model alignment of FedLoRU

Theorem 3.2 shows that clients exhibit higher stable ranks, indicating a more complex loss landscape that exacerbates
client discrepancies. Further, Theorem 3.3 demonstrates that low-rank approximations of client gradients are more closely
aligned compared to higher-rank approximations. This behavior implies that constraining updates to a low-rank space, as
implemented in FedLoRU, inherently regularizes client training by aligning updates along major directions and reducing
variations between clients.

To empirically validate the alignment of client updates with global updates, we conducted experiments to calculate the
average cosine similarity between the global update (difference between the aggregated global model and the previous
global model) and the local updates (differences between the locally trained models and the previous global model). These
experiments were conducted on CIFAR-100 in two configurations: (1) 20 clients with a participation rate of 0.5 and (2) 100
clients with a participation rate of 0.1, both in iid setting. The average cosine similarity across clients serves as a proxy for
the degree of alignment, with higher values indicating stronger alignment between local and global updates.

(a) CIFAR-100 - IID - K=20 - C=0.5 (b) CIFAR-100 - IID - K=100 - C=0.1

Figure 8: Average cosine similarity between global updates and local updates was calculated. Model weights were vectorized,
and the cosine similarity between each participating client’s update and the global update was computed.

In the first configuration with 20 clients, full-rank updates (FedAvg) initially exhibit higher cosine similarity, indicating
stronger alignment with the global update in the early training stages. As training progresses, the alignment for both full-rank
and low-rank updates decreases. Notably, after approximately 20 communication rounds, the low-rank updates consistently
achieve higher cosine similarity than full-rank updates. This observation suggests that while low-rank updates initially align
less closely with global updates due to their constrained nature, they adapt over time, improving alignment and maintaining
stronger consistency during later communication rounds.

In the second configuration with 100 clients, a similar trend is observed. Full-rank updates initially achieve higher cosine
similarity, reflecting better alignment in the early training stages. However, as training proceeds, low-rank updates surpass
full-rank updates in alignment. The slightly lower cosine similarity of low-rank updates in the early stages likely reflects the
initial adaptation of client updates within the constraints of the low-rank subspace.
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