
FedGA-Tree: Federated Decision Tree using
Genetic Algorithm

Anonymous Authors

Abstract—In recent years, with rising concerns for data pri-
vacy, Federated Learning has gained prominence, as it enables
collaborative training without the aggregation of raw data from
participating clients. However, much of the current focus has
been on parametric gradient-based models, while nonparametric
counterparts such as decision tree are relatively understud-
ied. Existing methods for adapting decision trees to Federated
Learning generally combine a greedy tree-building algorithm
with differential privacy to produce a global model for all
clients. These methods are limited to classification trees and
categorical data due to the constraints of differential privacy.
In this paper, we explore an alternative approach that utilizes
Genetic Algorithm to facilitate the construction of personalized
decision trees and accommodate categorical and numerical data,
thus allowing for both classification and regression trees. Com-
prehensive experiments demonstrate that our method surpasses
decision trees trained solely on local data and a benchmark
algorithm.

Index Terms—decision tree, federated learning, genetic algo-
rithm

I. INTRODUCTION

With rapid advancement of AI and machine learning, there
are many concerns about data usage and privacy. Lawmakers
worldwide have attempted to create incentives for companies
to focus more on privacy in their model development, with key
examples including the General Data Protection Regulations
implemented by the European Union and the California Con-
sumer Privacy Act.Federated Learning (FL) was introduced by
Google as an approach for mobile devices to collaboratively
solve a machine learning problem without sharing user’s local
data [14], [17]. In the FL framework, multiple clients con-
tribute to solve a machine learning problem while maintaining
their data locally. A global server helps aggregate information
that clients deem fit to share, such as model weights, and
construct an improved model. The two main scenarios of data
distribution in FL are horizontal and vertical. In the former,
clients have the same features but different set of samples
while in the latter, clients have different features but the same
set of samples.

Currently, the main focus of the FL research community is
on parametric, gradient-based models, yet there is an expand-
ing body of literature that explores the use of decision tree
models [25], [26] [7], [19]. Decision tree (DT) is a powerful
machine learning tool that is relatively easy to train and highly
interpretable. Furthermore, its ensemble variants, such as
XGBoost or Random Forest, have been shown to outperform
neural networks on tabular data [11], [12], [23]. The most
popular tree induction procedures are greedy algorithms, e.g.
CART [3] and ID3 [22], which rely on descriptive statistics

of the data such as counts of classes to recursively build the
tree top-down. Despite its advantages, the DT model can be
susceptible to privacy breaches, as the decision nodes contain
actual values of training data [21], [29], [29]. In addition,
by incorporating side information, an adversary can calculate
the maximum posteriori estimate for a sensitive feature in the
dataset [21].

Moderate efforts have been made to train tree-based models
in the field of FL. Existing approaches often expand on greedy
algorithms for tree induction and incorporate differential pri-
vacy and encryption [7], [19], [25], [26] to build a global deci-
sion tree for clients. Although these methods show promising
results, there are certain shortcomings. Most prominently is
the lack of personalization in the model. Furthermore, greedy
algorithms themselves tend to be more vulnerable to local
optima [1], and when combined with differential privacy,
their sequential top-down induction and iterative testing of
all features can compound the errors from noisy estimates.
This in turn constrains the possible maximum depth of the
tree and restricts the application to only categorical data and
classification problems.

To address these limitations, we propose a new approach
to building personalized federated trees by leveraging Genetic
Algorithm (GA) and using coarse aggregated information to
ensure data privacy. GA is a metaheuristic method inspired by
Darwinian evolution [15] that attempts to minimize an objec-
tive function by evolving an ensemble of candidate solutions.
With a combination of exploitative and explorative operators,
GA is equipped to perform a robust global search and avoid
local optima [1]. Specifically, our method utilizes the GA
workflow to evolve a population of candidate solutions, which
are binary tree structures with only decision node features
and encoded as integer strings. Clients fit these structures to
their local data to obtain personalized decision thresholds and
leaf node labels and evaluate the fitted trees. The server then
aggregates the fitness scores received from clients and applies
genetic operators to produce a new generation of candidate
trees. Our study has three main contributions:

• We are the first to propose a GA-based federated method
that builds personalized binary decision trees in the
horizontal FL framework. Our approach is compatible
with categorical and numerical data, enabling the training
of both classification and regression trees.

• Our method produces personalized trees, which is the first
such approach based on DTs.

• We ensure the privacy of local data by removing feature
thresholds and leaf labels from the trees, thus preventing

attackers from inferring how the data are split. We also
limit the exposure of direct descriptive statistics and only
disclose coarse aggregated information (locally optimized
maximum depths, coefficients of variation, and model
evaluation scores) that provides a more abstract summary
of the data.

• We validate our method with extensive numerical exper-
iments and achieve superior performance compared to
various approaches, including the state-of-the-art method
by Truex et al. [25]. We also demonstrate the stability of
our method in the case of partial client participation.

The rest of the paper is organized as follows. We give an
overview of decision trees and the related works in FL and
outline the key components of GA in Section 2. In Section
3, we present the problem formulation and describe our tree-
building algorithm with a discussion on privacy. Experiments
and results are shown in Section 4, followed by a concluding
discussion in Section 5.

II. RELATED WORK

In this section, we give an overview of decision tree models
and discuss existing methods for training decision trees in the
FL framework. We also present the general GA workflow and
its key concepts.

A. Decision trees

The decision tree (DT) is an important type of machine
learning model that works well for medium-sized data and its
advantages include simplicity, interpretability, and invariance
with respect to feature scales. A decision tree comprises two
types of nodes: decision nodes and leaf nodes. The former
consists of a feature and threshold value and is used to route
samples to a leaf node. The latter contains either the target
class or a target value.

The two most popular tree building algorithms for classifi-
cation are CART [3] and ID3 [22]. These greedy algorithms
build a tree top-down by choosing the feature and associated
value(s) that optimizes a chosen metrics, splitting the dataset,
and continuing the procedure as needed. Leaf node labels are
either the majority class (classification) or the average of the
target values (regression). ID3 creates multi-way trees while
CART selects a single threshold to create two branches in the
tree. They use information gain or Gini impurity to decide
a split. For regression, CART calculates mean squared errors
(MSEs).

B. Privacy-preserving DTs

Because local data are incorporated into the model structure
via decision nodes, DTs can pose significant privacy risks.
Previous works address this issue by adding privacy-preserving
protocols to existing greedy algorithms. These protocols often
entail a combination of encryption (e.g. homomorphic encryp-
tion) and differential privacy (DP). In differentially private
algorithms, the removal or addition of a single sample does
not have a statistically significant impact on the output. In
order to achieve differential privacy, random noise is added

to the output, where the amount of noise is dictated by, and
inversely proportional to, a predetermined privacy budget ϵ.
The lower the privacy budget, the more differentially private
the algorithm is and the stronger the added noise needs to be.
The Laplace Mechanism is a popular DP protocol.

To make DTs private, previous methods incorporate DP in
the procedure by adding noise to class counts before calcu-
lating any metrics [2], [9]. Due to the composition theorem
of DP [8], given a total privacy budget of ϵ, the budget for
each node at the same depth is ϵ/d where d is the desired
maximum depth of the tree. To determine the right split of a
decision node, we need to further divide the privacy budget by
the total number of potential splits, which scales not only with
the number of features but also the number of unique values.
As a result, these methods are either limited to categorical
data and the classification task, or require discretization of
continuous features and target values prior to training.

C. Federated DTs

Recent research on DTs in FL combines methods developed
in the fields of privacy-preserving and distributed computing
[7], [19], [25], [26]. For the horizontal scenario, the state-of-
the-art method is Truex et al. [25], a protocol developed by
IBM that combines differential privacy, encryption, and secure
multiparty computation (SMC) to train a federated decision
tree using the ID3 algorithm. The server queries clients for
total counts and class counts to compute the information
gain while clients add Laplace noise before returning a query
output. A key contribution of this work is reducing the amount
of noise added to the outputs by leveraging encryption and
SMC. Specifically, Truex et al. consider a threat model in
which the server and clients can collude among one another.
Then given a minimum of t honest clients, the required noise
can be reduced by a factor of t− 1.

Although Truex et al. [25] show promising results, there
are certain shortcomings. First, despite reducing the required
amount of noise, this new protocol is still limited to categorical
data and classification only; regression problems or numerical
data require discretization. Second, it is unclear whether the
federated model consistently outperforms models that clients
train locally without any federation. The authors only bench-
mark against the global tree without privacy guarantee and
the traditional local DP protocol without SMC, and numerical
experiments are applied to only one dataset. Third, although
Truex et al. [25] experiment with varying the total number
of clients in the FL system, the effect of partial client par-
ticipation is not explored in the paper. During a round of
communication, it is possible that not all clients are available
to respond to the server’s queries and engage in training. As a
result, it is important to understand how the performance of a
federated model changes in this scenario. Finally, the method
by Truex et al. [25], similar to all works in FL for DTs, builds
a single global DT for all clients, yet this lack of flexibility
can have a negative impact on the predictive power of the
federated model. Our paper by employing GA addresses these
limitations by enabling personalization and investigating the

Fig. 1. Genetic algorithm workflow.

model performance with varied client participation and more
datasets.

There is also a rich literature on federated DTs that explores
either the vertical scenario in data partitioning [7], [19] or
extends FL to tree-based ensembles, i.e., bagging [6], [10],
[16], [17], [19], [27] and boosting [4], [5], [18], [24], [28].

D. Genetic Algorithm

Genetic Algorithm (GA) is a highly flexible optimization
method in which key procedures are customized according to
the specific problem. The general workflow of GA is shown
in Fig. 1. The algorithm starts with an initial population
of candidate solutions. At each generation, GA evaluates
the fitness of current candidates and selects only the top
performers to generate new offspring. The basis of selection
is the assumption that candidates with better fitness values
contain better genetic matter to form the next generation.
Tournament selection is one of the most popular schemes in
GA [1]. A tournament of size s means that s individuals are
chosen at random in a round robin fashion from the population
and only the ‘fittest’ enters the pool for reproduction. To create
new offspring, GA performs genetic operators, such as cross-
over and mutation, on selected candidates.

Barros et al. [1] provide a detailed review of the rich
literature on the use of GA in decision tree induction. It should
be noted that all of the existing works are limited to the
centralized, nonfederated framework. In this paper, we adapt
the GA workflow to the FL framework by introducing a new
algorithm to effectively train federated DTs.

III. METHOD

In this section, we present our federated algorithm, termed
FedGA, which enables training of personalized binary decision
trees in the horizontal FL framework. FedGA utilizes the
GA workflow to evolve a population of structures, defined as
search trees containing only decision features. By removing
decision thresholds and leaf labels, we allow client person-
alization and ensure privacy by limiting the exposure of any
descriptive statistics of local data. We differentiate between a
structure which only has features in the corresponding search
tree nodes and a decision tree which has features, thresholds,
and leaf labels and can be used to make predictions. During
each round of communication, clients get a population of
candidate structures from the server, fit these structures to
their local data to obtain personalized feature thresholds and

leaf labels, and compute the fitness values (e.g. F1 score for
classification and MSE for regression). The server aggregates
these fitness scores from clients and creates a new generation
of structures accordingly. When training terminates, clients
select from the final population of structures one that performs
best on their local data. Thus, the final output of FedGA is a
personalized decision tree for each client. Note that FedGA is
compatible with any type of data and is applicable for both
classification and regression.

The pseudocode is provided in Algorithm 1 in which steps
3-25 detail the initialization of FedGA and steps 26-43 lay out
the training procedure. Finally, steps 44-49 give instructions
on how clients can select their respective final decision tree.
Fitness function f is typically F1 or MSE for regression.

FedGA starts with active clients performing K-fold cross-
validation (CV) on local data to obtain the optimized max-
imum depth di (step 6). In cross-validation training is per-
formed and the validation metric is computed for each fold
and each maximum tree depth in [dmin, dmax]. Clients also
obfuscate the total number of samples with ϵ privacy by
adding Laplace noise (step 7). The server determines the
global maximum depth by taking the median of the proposed
depths instead of the mean to avoid outliers and broadcasts
d to all clients (step 10). Clients then use CART to train a
binary decision tree corresponding to the global maximum
depth d and send the structure in which its feature thresholds
are removed to the server (step 12). The server initializes
the GA population, incorporating the local structures received
from clients (step 21). Details on the encoding of search tree
structures and the Initializer function to generate random
structures are reported in Section III-A.

For regression, clients also send their votes on whether
fitness scores of candidate structures should be calculated
using the validation subset (train ratio r < 1) or the entire
local training data (train ratio r = 1) and whether to leverage
elitism (steps 16-17). If more than half of the clients vote yes,
the server adopts the respective strategy (steps 23-24).

During each round of training, the server shares new candi-
date structures with the activate clients, who in turn fit the
structures to their local data and compute the appropriate
fitness scores (step 28). We discuss this Evaluate procedure
in more detail in Section III-B. In order to aggregate the fitness
scores from clients, the server calculates the weighted average
for each candidate search tree, using the noisy total sample
counts (step 37). Training continues with the server updating
the GA population by removing low-performing candidates
(see Section III-C) (step 39) and generating new offspring via
the functions Crossover and Mutation (see Section III-D)
(steps 40-41). Once the maximum number of generations is
reached, each client receives the final set of candidate solutions
from which to choose the top performer with respect to local
data (steps 47-48).

Due to partial client participation, the server keeps track
of which clients have participated in training before. As new
clients join, they further send their perturbed sample sizes
(steps 13, 32) as well as the local structures and corresponding

fitness scores (step 31). The server adds these new structures
to the GA population and continues the workflow.

We next discuss the details of our key GA operators in
the following Sections III-A, III-B, III-C, and III-D, and the
privacy aspect of FedGA in III-E.

A. Tree structure encoding

We employ an encoding scheme that converts candidate
structures into fixed-length integer strings. Each element in
the string represents a decision node of a full binary search
tree with maximum depth d where the ordering follows a pre-
order depth-first traversal of the tree. As a result, the length
of the string is 2d− 1. We assume that each feature name and
its metadata is hashed to an integer. These are search trees
based on an implicit order defined by the algorithm, i.e. child
nodes are ordered. Let nil represent an integer that is not a
hash value of any feature. The value of each element either
corresponds to a decision node’s feature hash value or takes
the value nil if a tree structure is incomplete such that the
node is actually a leaf node or is nonexistent.

Fig. 2 illustrates an example of our encoding scheme for
a structure with a maximum depth of d = 3. The features
are hashed to 0, ..., 3 and nil can be −1. Since the structure is
incomplete, we need to add the appropriate paddings to ensure
the correct ordering of the decision nodes. The advantages
of converting structures into fixed-length strings include easy
integration into the GA workflow and bloat control, that is,
preventing trees to grow to excessively large depth, as in
Genetic Programming [20]. Guidotti et al. [13] use a similar
representation, but instead of strings, they encode trees as
matrices that contain feature thresholds.

To decode, we can map the integer strings back into tree
structures with a depth-first traversal. In the cases of detached
subtrees, for example, if we replace 2 by nil in Fig. 2, we keep
the connected tree that starts from the root and omit detached
subtrees.

To generate the initial GA population, the function
Initializer first creates random strings of integers by drawing
from the set of features F = {0, 1, ..., |F| − 1} until the
desired population size is reached. To encourage more diverse
structures with varying distances from root to leaves, we
randomly set a portion of the already selected decision nodes,
as given by the leaf node ratio parameter rl, to nil.

B. Evaluation of candidate structures

After decoding the integer strings into search tree structures,
clients have two main tasks: obtaining feature thresholds and
calculating fitness scores. We follow the same procedure as
in CART [3] to select thresholds that minimize either Gini
impurities (classification) or MSE (regression).

Algorithm 1 Federated Genetic Algorithm (FedGA) Tree
1: Server Input: GA population size P , number of GA

generations G, privacy budget ϵ, set of features F , leaf
node ratio rl, tournament pressure s, number of node flip
m1, number of node swap m2

2: Client i Input: Dataset Di, i ∈ [N]; train ratio r, fitness
function f , number of cross-validation folds K, range of
possible tree depths [dmin, dmax]

3: SERVER
4: P ← {}, F ← {}
5: for CLIENT i in set of active clients C0 do
6: Sends di ← CrossV alidation(Di,K, dmin, dmax)
7: Sends sample size ni ← |Di|+ Laplace(1/ϵ)
8: end for
9: SERVER

10: Broadcasts d←Median({di, i ∈ C0}) to all clients
11: for CLIENT i in set of active clients C do
12: Constructs and sends local structure T i

d

13: Sends sample size ni ← |Di|+Laplace(1/ϵ) if i ̸∈ C0

14: if regression then
15: CrossV alidation(Di,K, dmin, dmax) if i /∈ C0

16: Sends vote on evaluation strategy votei1 ∈ {0, 1}
based on Eq. 1

17: Sends vote on elitism strategy votei2 ∈ {0, 1}
based on Eq. 2

18: end if
19: end for
20: SERVER
21: P̃ ← Initializer

(
F , rl, d, (P − |C|)+

)
∪ {T i

d, i ∈ C}
22: if regression then
23: Broadcasts new train ratio r = 1 to all clients if∑

i∈C votei1 > |C|/2
24: Uses elitism if

∑
i∈C votei2 > |C|/2

25: end if
26: for g = 1, ..., G do
27: for CLIENT i in set of active clients C̃ do
28: F̃ i = {f i

t , t ∈ P̃} ← Evaluate(P̃,Di, r, f)
29: if i ̸∈ C then
30: Constructs and sends local structure T i

d

31: F̃ i ← F̃ i ∪ Evaluate(T i
d,Di, r, f)

32: Sends sample size ni ← |Di|+ Laplace(1/ϵ)
33: end if
34: Sends F̃ i to the server
35: end for
36: SERVER
37: F̃ ← {ft : ft =

∑
i∈C̃ f i

t · ni/
∑

j∈C̃ nj , f i
t ∈ F̃ i}

38: P̃ ← P̃ ∪ {T i
d, i ∈ C̃ \ C}

39: P, F ← Update(P, P̃, F, F̃)
40: C ← C ∪ C̃
41: P̃ ← Crossover(P, F, s)
42: P̃ ←Mutation(P̃,m1,m2,F)
43: end for
44: SERVER
45: Broadcasts P to all clients;
46: for CLIENT i = 1, ..., N in parallel do
47: F i ← Evaluate(P,Di, r, f)
48: Selects best performing decision tree
49: end for

Fig. 2. Example of a search tree structure with a maximum depth of d = 3
and the corresponding string representation.

The following applies only to regression and during the
initialization phase (steps 3-25). The different treatment from
classification is needed, as building a regression tree is typ-
ically more difficult than a classification tree. In fact, the
regression tree model predicts a specific value and uses metrics
that are not bounded, such as MSE. Thus, small deviations can
be heavily penalized, resulting in regression trees having more
sensitivity to noise and instability with respect to evaluation
scores, compared to classification trees. Therefore, to calculate
fitness scores, we use either the entire local training set or
the validation subset, depending on the characteristics of the
dataset. With the former strategy, clients use all of the local
data for both tasks. With the latter strategy, clients create
a train/validation split and use the training subset to obtain
full decision trees from structures and the validation subset to
compute the fitness scores.

In determining which strategy to employ, we characterize
a dataset by how noisy the data are and how complex the
interactions among features are. Recall that we require clients
to perform a K-fold CV on the local data to select the
maximum depth. If the data are noisy, the CV scores can
vary significantly across different folds. Furthermore, deeper
trees tend to better explain the data with complex interactions
among features.

Suppose that for each client i, the cross-validation score
corresponding to a maximum depth j and fold k is denoted by
vikj . Let ϕi

j be the coefficient of variation of values {vikj , k ∈
[K]} and θik be the coefficient of variation of values {vikj , j ∈
[dmin, dmax]}. These values are computed in steps 6 and 15
for each client i ∈ C ∪ C0. We characterize the amount of
noise in a dataset by the coefficient of variation, ϕi

d, of the
validation scores across different folds at j = d where d is the
global maximum depth chosen by the server. In addition, we
define the complexity of feature interactions in a dataset as the
average coefficient of variation of the validation scores across
different maximum depths, i.e. the mean of {θik, k ∈ [K]}.
The choice of these metrics is due to the fact that coefficient
of variation is a dimensionless measure, thus well-suited for
comparison between datasets with varying units. We use the
R2 score as the cross-validation metric.

After calculating these two metrics, clients determine which
strategy should be used. We find that the first strategy of
using all of the local data is more beneficial for datasets with
less noise (ϕi

d < ϕ∗) and more complex interactions between

features (θi > θ∗) where ϕ∗ and θ∗ are thresholds obtained
experimentally. To this end, we set

votei1 =

{
1 if ϕi

d < ϕ∗ and θi > θ∗

0 otherwise.
(1)

The server selects the strategy with more than half of the votes
and relays that decision to the clients.

C. Updating the GA population

Before advancing to the next generation, GA combines
the parent population and its offspring pool to eliminate low
performers ranked by the fitness scores.

For regression, if the target variable has high cardinality, that
is, a high percentage of unique values, the server incorporates
elitism, keeping the set of tree structures received from clients
in every generation. Otherwise, we employ the traditional
update strategy.

Let µi denote the percentage of unique values for the target
variable in the local data of the client i. We set

votei2 =

{
1 if µi > µ∗

0 otherwise
(2)

where µ∗ is determined experimentally. If more than half of
the active clients vote for elitism, the server implements the
strategy in each GA iteration.

D. Crossover and mutation

In FedGA, the implementation of crossover is straightfor-
ward due to the string representation. We employ the tourna-
ment selection strategy with pressure to select the reproduction
pool and perform the popular one-point crossover. On the other
hand, mutation requires more careful design to ensure effective
exploration, as simply changing a feature may not be enough
to escape the local search space. We devise three mutation
strategies - node flip, node swap, and substring swap - and
randomly apply one in each generation of GA.

Node flip is a multi-point mutation in which we randomly
select a number of positions in the integer string, given by
the parameter m1, and replace the current values with either
a different feature or −1. Node swap involves the exchange
of values between two random positions, and this procedure
can be repeated m2 times for better exploration. Finally, for
substring swap, we split the candidate into three substrings and
randomly reorder them. In implementation, we set m1 and m2

as some percentage of the string length.

E. Privacy discussion

We consider an honest-but-curious scenario, similar to
Truex et al. [25], in which all parties follow the instructions but
still attempt to infer information related to clients’ data. Unlike
[25], we do not rely on DP to explicitly guarantee privacy,
except in the one-time communication of clients’ sample size,
because FedGA is not built on direct descriptive statistics of
local data, but instead uses coarse aggregated information.

Specifically, the only descriptive information about client
data that the server has access to is the (perturbed) total sample

size, the list of features, the locally optimized maximum depth,
and the coefficients of variation related quantities (ϕi

d and
θi). The sample size is a direct statistics and therefore we
implement DP to ensure privacy for clients. Furthermore,
it is common to assume that the list of features is global
knowledge in the horizontal FL setting. The maximum depth
and the coefficients of variation limit a potential membership
inference attack because they are coarse metrics aggregated
over multiple folds and provide an abstract description of the
data.

During training, our procedure does not involve any ad-
ditional descriptive statistics of local data and only requires
the disclosure of evaluation scores, F1 or MSE. We want to
emphasize that the evaluation is done by clients on local data,
and the server does not query the evaluation of search tree
structures for additional data samples. As a result, the server
can observe how a change in decision node features can affect
the evaluation and, for example, infer that one feature has more
impact than others. However, there is no knowledge about the
specific value that the feature can take on and how the data
are split.

IV. EXPERIMENTS AND RESULTS

In this section, we demonstrate the performance of FedGA
in both classification and regression as well as with full
and partial client participation. We benchmark against the
centralized tree, which is trained using centrally aggregated
data, and local trees, which are trained locally by clients. For
classification, we further benchmark against the DP-based tree
building algorithm by Truex et al. [25], referred to as IBM
tree henceforth. Because the method is originally developed
for multiway trees with the ID3 algorithm, we adjust the
IBM protocol to build binary trees with CART instead to
ensure fair juxtaposition with FedGA. To capture the effect
of randomization in both methods, we execute 10 independent
runs given a train/test split and report the averages across these
runs and clients.

A. Experimental settings

1) Data: We conduct experiments on 14 classification
datasets and 14 regression datasets (Table I). The first two
classification datasets, nusery and adult, are provided in
the IBM Federated Learning repository1 that hosts the method
developed by Truex et al. [25]. The remaining datasets are
curated from Grinsztajn2 et al. [12], which explores how tree-
based models can still outperform deep neural networks on
tabular data, but are limited to those with fewer than 75000
samples and fewer than 30 features. Since IBM trees are con-
structed with DP and are highly sensitive to the cardinality of
features, we categorize any numerical features in classification
datasets using the KBinsDiscretizer function from the
scikit-learn package. Details on the discretization are
deferred to Appendix A.

1https://github.com/IBM/federated-learning-lib/tree/main/examples/id3 dt
2https://huggingface.co/datasets/inria-soda/tabular-benchmark

TABLE I
DATASETS. THE TABLE CONTAINS INFORMATION ON NUMBER OF

SAMPLES n AND NUMBER OF FEATURES |F|.

Classification Regression
Dataset n |F| Dataset n |F|

nursery 12960 8 analcatdata 4052 7
adult 48842 14 abalone 4177 8

california 20634 8 bikesharing 17379 11
compas 4966 11 brazil 10692 11

creditcard 13272 21 cpu 8192 21
diabetes 71090 7 elevators 16599 16
electric 38474 8 house16H 22784 16
eyemvt 7608 23 houses 20640 8
heloc 10000 22 housesales 21613 17

house16H 13488 16 miami 13932 13
kaggle 16714 10 soil 8641 4

marketing 10578 7 sulfur 10081 6
pol 10082 26 wine 6497 11

telescope 13376 10 yprop 8885 42

Each dataset is randomly divided into train/test sets with
proportion 90%/10% and the latter is common among clients
for comparison. We partition the training data into disjoint
subsets by randomly assigning samples to a client. This results
in clients having approximately equal number of samples and
roughly the same distribution of classes (classification) or
target values (regression). To account for the noise in the data
and guarantee the robustness of our results, we generate 10
independent train/test splits and repeat the same experiments
10 times for each split. In each iteration of the algorithm, we
generate active clients uniformly at random where c denotes
the percentage of active clients.

2) Benchmarks: To demonstrate the efficacy of our method,
we use the following benchmarks:

• Centralized tree, trained by a central server that has access
to all client data;

• Local tree, trained by each client locally and in silo, i.e.,
without any collaboration with other clients; and

• IBM tree, trained with the DP protocol in [25] and
adjusted for binary trees. This benchmark is only applied
to classification datasets since the method is limited to
categorical data only.

Note that the IBM method is developed for multiway trees,
while FedGA is specific to binary trees. We replace the
ID3 procedure in [25] with CART so that the IBM method
produces a single binary tree instead. We fix the privacy budget
at ϵ = 1. As shown in Truex et al. [25], the performance
of IBM trees for ϵ ≥ 1 is relatively stable, while smaller
values of ϵ exhibit a noticeable degradation in results. Thus,
we pick ϵ = 1 to balance between performance and privacy
for the IBM method. We also assume that all clients are
honest and non-colluding. To determine the maximum depth
for IBM trees, we randomly pick three datasets (hou16H,
kaggle, and marketing) and fine-tune the depth within
the range [2, 15]. We find that a maximum depth of 6 yields
the best performance on average and fix this depth for all
datasets. We include the results for training IBM trees with

TABLE II
HYPERPARAMETERS IN FEDGA.

P G ϵ r

20 (classification) or 40 (regression) 100 1 0.8

rl s m1 m2 ϕ∗ θ∗ µ∗

0.01 3 0.05 0.05 0.25 0.02 80

the median depth strategy of FedGA and the half strategy of
the original paper where the maximum depth is chosen as
|F|/2, in Appendix B.

With the centralized and local trees, we perform K-fold
cross-validation (K = 5) on the aggregated and local data
respectively, to select the maximum depth. Note that the local
trees can have the same structure as those used to initialize
GA if the locally optimized depth is the same as the depth
selected by FedGA. We refer to the latter as local structures
to differentiate them from the local decision trees.

Regarding metrics, we calculate the F1 score on the test
data for classification and MSE for regression. Since maxi-
mum depths can vary across different methods, we quantify
the complexity of a tree by the number of decision nodes.
Moreover, because we incorporate local structures in the
initialization, we evaluate whether FedGA is able to navigate
the search space effectively or it is stuck with the initial
local structures and the search thus becomes futile. Hence,
we calculate the normalized tree edit distance between the list
of hashed decision features of a client’s final FedGA tree and
that of the respective local structure.

Finally, to better understand the client-level benefit of FL,
we compute the following metric for each client

∆i =
(Test score of federated tree

Test score of local tree
− 1

)
∗ 100, (3)

and obtain ∆ = Mean({∆i, i ∈ [N]}) where N is the total
number of clients in the FL system. This metric measures the
average percentage increase in the test score of federated trees
compared to local trees. For classification, the desired ∆ in F1
score is greater than 0, while for regression, negative values
are preferred for MSE.

3) Implementation: We limit the range of possible tree
depths [dmin, dmax] to [2, 15] to maintain interpretability. We
report the remaining hyperparameters of FedGA in Table II,
which are obtained from manual fine-tuning.

All codes are written in Python version 3.11.0 and exper-
iments are performed on a heterogeneous high-performance
computing cluster consisting of Intel Cascade Lake 6230, Ice
Lake 6338, and Emerald Rapids 8592+ nodes.

B. Results

1) Classification: An important aspect in evaluating a fed-
erated model is how much the results are improved relative
to locally trained models. We illustrate this comparison in a
20-client FL system with c = 100% for different datasets
in Fig. 3 with two metrics, the ∆ in F1 score and the
percentage of clients for which federated trees perform better.

(a) ∆ in F1 score of federated trees compared to local trees.

(b) Percentage of clients for which the federated trees outperform local trees.

Fig. 3. Performance of federated trees compared to local trees for different
datasets across 10 random train/test splits. (a) The medians and interquartile
ranges (IQRs) of ∆ in F1 score. (b) The median percentages of clients for
which federated trees perform better as well as the corresponding IQRs. The
∆’s and percentages of clients are averaged across independent runs for each
train/test split.

We later vary N and c. These two values of N and c are
selected so that each client has at least 200 samples to ensure
meaningful local training. The experimental results in Fig.
3(a) offer compelling evidence for the superior performance of
our method, compared to IBM and local trees. Furthermore,
for every dataset except nursery, FedGA has more than
50% of clients benefiting from federated training. Across all
datasets, FedGA achieves a ∆ = 5.58 on average, while IBM
trees result in a ∆ = −2.58. Similarly when averaged across
datasets, 75% of clients show better performance compared to
local models with FedGA trees but only 31% do with IBM
trees.

We also present an analysis of the complexity of FedGA
trees in Fig. 4. Evidently, the trees produced by FedGA are
less complex than the local trees, which likely leads to better
generalizability and explains the increase in the F1 score.
In contrast, IBM trees consist of considerably more decision
nodes than local trees, explaining their modest performance. In
Fig. 4(b), we show the normalized tree edit distance between
the FedGA outputs and the local structures in the initial GA
population. On average, FedGA trees are significantly different
from their corresponding local structures as normalized edit
distances are greater than 50% for most datasets (12/14).
This indicates that FedGA is able to navigate the search space
effectively and is not easily trapped in local optima.

We give further insight into the performance of FedGA
for the nursery dataset, which is the only one yielding
negative ∆ for both FedGA and IBM trees. In Fig. 5(a),
it is evident that the IBM tree induction procedure is more
sensitive to randomization, compared to FedGA. We point
out that IBM generates the same tree for each client in
each run. Furthermore, as shown in Fig. 5(b), the IBM trees
clearly underperform compared to the local trees, whereas the

(a) Number of decision nodes.

(b) Normalized tree edit distance between clients’ FedGA trees and their
corresponding local trees.

Fig. 4. Comparison of tree structures for different datasets across 10 random
train/test splits. (a) The medians and IQR’s of the number of decision nodes
averaged across clients and independent runs of the FedGA and IBM method.
(b) Boxplots of the normalized tree edit distance between clients’ FedGA trees
and their corresponding local structures, averaged across independent runs.

(a) Test scores for one train/test split.

(b) Test scores averaged across clients for 10
random train/test splits.

Fig. 5. Performance of different methods on the nursery dataset. (a) The
IQRs of test scores for one random train/test split of the data. Every other
client is displayed. (b) The distribution of test scores for different train/test
splits of the data. The test scores of FedGA and IBM trees are averaged across
clients and independent runs.

performance gap for FedGA is much less significant.
Next, in Fig. 6 we present the results of FedGA as the total

number of clients varies N ∈ {5, 10, 15, 30}. The total number
of clients in a system dictates the size of the entire FL system,
and as the number of clients increases, the size of local data
decreases. Fig. 6 illustrates the ∆ in F1 score with full client
participation. We observe a similar pattern as N = 20, i.e.
FedGA consistently outperforms IBM trees.

In addition to the total number of clients, we investigate
the impact that varying the percentage of client participation
has on training outcomes. Fig. 7 highlights the robustness
of our GA-based method and the drawback of DP-based

(a) FedGA trees

(b) IBM trees

Fig. 6. ∆ in F1 score across random train/test splits for FedGA and IBM
trees as the total number of clients in the system varies.

(a) FedGA trees

(b) IBM trees

Fig. 7. ∆ in F1 score across random train/test splits in the case of partial
client participation for FedGA and IBM trees.

IBM trees as we vary the percentage of active clients per
generation c ∈ {50%, 25%, 10%}. Note that the latter lever-
ages encryption and SMC to reduce the amount of noise
required for ϵ privacy, thus improving accuracy. As a result,
the reduction is proportional to the number of active clients
in the training procedure. As fewer clients contribute, we
observe a significant decrease in predictive power. Meanwhile,
FedGA exhibits much more stability for various levels of client
participation.

2) Regression: Finally, we report the results for the regres-
sion data sets, and since the test score is MSE, a negative
value for ∆ is preferred. Similarly to classification, we observe
in Fig. 8 that FedGA trees consistently outperform local trees
for most datasets (10 out of 14) and for at least 50% of the
clients. For the two datasets, sulfur and brazil, although
we have more than half of the clients making improvements
with federated trees, it is likely that ∆ is skewed by the
increase in MSE for other clients.

(a) ∆ in MSE of federated trees compared to local trees.

(b) Percentage of clients for which the federated trees outperform local trees.

Fig. 8. Performance of federated trees compared to local trees for different
datasets across 10 random train/test splits. (a) The medians and IQRs of ∆
in MSE. (b) The median percentages of clients for which federated trees
perform better as well as the corresponding IQRs. The ∆’s and percentages
of clients are averaged across independent runs for each train/test split.

We also inspect the complexity of FedGA trees in Fig. 9
and find that the average number of decision nodes in FedGA
trees is lower than that of local trees. On the other hand,
we notice in Fig. 9(b) that there is an increase in similarity
between FedGA and the corresponding GA local structures
compared to classification. For the brazil dataset, almost all
clients end up with the local structures of the initial population,
yet we observe an increase in MSE. This is likely because
the benchmarks are trained with locally optimized maximum
depths while the local structures in the initial GA population
are obtained with the aggregated maximum depth determined
by the server. It should also be noted that the brazil dataset
is the only one for which the elitism strategy is activated for
every train/test split.

Last but not least, we investigate the performance of FedGA
when the total number of clients and the percentage of active
clients vary. We report the results in Fig. 10. Compared to
classification, we observe that FedGA trees generally perform
worse than local trees when there are fewer clients in the FL
system, particularly for the soil dataset when N = 5. Upon
closer inspection, we find that there are still on average 50%
of the clients for whom FedGA trees perform better than local
trees. However, for the remaining clients who do not achieve
any improvement, the MSE gaps between the federated and
local models are significant enough to skew the ∆. Meanwhile,
in the case of partial client participation, FedGA still maintains
stable predictive power as the percentage of active clients per
generation decreases.

V. DISCUSSION

In this paper, we present a federated method that draws upon
Genetic Algorithm to build personalized decision trees and
accommodates categorical and numerical data, thus enabling
both classification and regression trees. We compare our

(a) Number of decision nodes.

(b) Normalized tree edit distance between clients’ FedGA trees and their
corresponding local trees.

Fig. 9. Comparison of tree structures for different datasets across 10 random
train/test splits. (a) The medians and IQRs of number of decision nodes
averaged across clients and independent runs of FedGA. (b) The normalized
tree edit distance between clients’ FedGA trees and their corresponding local
trees, averaged across independent runs.

(a) Varied total number of clients in the system.

(b) Varied percentage of active clients.

Fig. 10. ∆ in MSE across random train/test splits for FedGA as the total
number of clients and the percentage of active clients varies.

approach with three benchmarks: 1) global trees trained with
aggregated data without any privacy protocols, 2) local trees
that clients train solely on local data, and for classification,
3) IBM trees by Truex et al. [25] that are trained using a
greedy algorithm and differential privacy. Our method con-
sistently outperforms the last two benchmarks and exhibits
much more stability than IBM trees in the case of partial
client participation, in which only a subset of clients contribute
in a training iteration. With regression datasets, FedGA also
achieves great results, but it is clear that using an unbounded
metric like MSE can skew evaluation results. For future work,
we want to further improve the performance of FedGA for
regression by experimenting with bounded metrics such as R2

score or relative absolute error. We also plan to explore the
effect of heterogeneous data and implement a more rigorous

privacy assessment to quantitatively measure the impact of
membership inference attacks on our method.

REFERENCES

[1] Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre CPLF De Car-
valho, and Alex A Freitas. A survey of evolutionary algorithms for
decision-tree induction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(3):291–312, 2011.

[2] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
Practical privacy: the SuLQ framework. In Proceedings of the 24th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 128–138, 2005.

[3] Leo Breiman, Jerome Friedman, Richard A Olshen, and Charles J Stone.
Classification and regression trees. Routledge, 2017.

[4] Xiaomin Chang, Wei Li, and Albert Y Zomaya. Fed-gbm: A cost-
effective federated gradient boosting tree for non-intrusive load moni-
toring. In Proceedings of the 13th ACM International Conference on
Future Energy Systems, pages 63–75, 2022.

[5] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios
Papadopoulos, and Qiang Yang. Secureboost: A lossless federated
learning framework. IEEE Intelligent Systems, 36(6):87–98, 2021.

[6] Lucas Airam C de Souza, Gabriel Antonio F Rebello, Gustavo F
Camilo, Lucas CB Guimarães, and Otto Carlos MB Duarte. Dfedforest:
Decentralized federated forest. In 2020 IEEE International Conference
on Blockchain, pages 90–97. IEEE, 2020.

[7] Wenliang Du and Zhijun Zhan. Building decision tree classifier on
private data. 2002.

[8] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics.
In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, pages 371–380, 2009.

[9] Arik Friedman and Assaf Schuster. Data mining with differential privacy.
In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 493–502, 2010.

[10] Irene Giacomelli, Somesh Jha, Ross Kleiman, David Page, and Kyongh-
wan Yoon. Privacy-preserving collaborative prediction using random
forests. AMIA Summits on Translational Science Proceedings, 2019:248,
2019.

[11] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko.
Revisiting deep learning models for tabular data. Advances in Neural
Information Processing Systems, 34:18932–18943, 2021.

[12] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-
based models still outperform deep learning on typical tabular data?
Advances in Neural Information Processing Systems, 35:507–520, 2022.

[13] Riccardo Guidotti, Anna Monreale, Mattia Setzu, and Giulia Volpi.
Generative model for decision trees. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 21116–21124,
2024.

[14] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

[15] John H Holland. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[16] Jinpeng Hou, Mang Su, Anmin Fu, and Yan Yu. Verifiable privacy-
preserving scheme based on vertical federated random forest. IEEE
Internet of Things Journal, 2021.

[17] Saikishore Kalloori and Severin Klingler. Cross-silo federated learning
based decision trees. In Proceedings of the 37th ACM/SIGAPP Sympo-
sium on Applied Computing, pages 1117–1124, 2022.

[18] Qinbin Li, Zeyi Wen, and Bingsheng He. Practical federated gradient
boosting decision trees. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 4642–4649, 2020.

[19] Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi Meng, Junbo
Zhang, and Yu Zheng. Federated forest. IEEE Transactions on Big Data,
2020.

[20] Sean Luke and Liviu Panait. A comparison of bloat control methods for
genetic programming. Evolutionary Computation, 14(3):309–344, 2006.

[21] Cheolhee Park, Dowon Hong, and Changho Seo. Evaluating dif-
ferentially private decision tree model over model inversion attack.
International Journal of Information Security, 21(3):1–14, 2022.

[22] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–
106, 1986.

Fig. 11. ∆ in F1 score across random train/test splits for IBM trees with
different strategies for determining maximum depth.

[23] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is
not all you need. Information Fusion, 81:84–90, 2022.

[24] Zhihua Tian, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren.
Federboost: Private federated learning for GBDT. arXiv preprint
arXiv:2011.02796, 2020.

[25] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, pages 1–11, 2019.

[26] Kaiwen Wang, Travis Dick, and Maria-Florina Balcan. Scalable and
provably accurate algorithms for differentially private distributed deci-
sion tree learning. arXiv preprint arXiv:2012.10602, 2020.

[27] Houpu Yao, Jiazhou Wang, Peng Dai, Liefeng Bo, and Yanqing Chen.
An efficient and robust system for vertically federated random forest.
arXiv preprint arXiv:2201.10761, 2022.

[28] Lingchen Zhao, Lihao Ni, Shengshan Hu, Yaniiao Chen, Pan Zhou,
Fu Xiao, and Libing Wu. Inprivate digging: Enabling tree-based
distributed data mining with differential privacy. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications, pages 2087–
2095. IEEE, 2018.

[29] Zutao Zhu and Wenliang Du. Understanding privacy risk of publishing
decision trees. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 33–48. Springer, 2010.

APPENDIX A
DATA PREPROCESSING

For classification datasets with numerical features, we apply
the KBinsDiscretizer to divide the range of the feature
into 5 bins and convert numerical values into ordinal values. To
determine the bin edges, we employ the ‘quantile’ strategy
so that each bin contains approximately the same number
of samples. Note that KBinsDiscretizer automatically
adjusts the number of bins if there are not enough samples
in some bins. Should there be only 1 bin, we switch to the
‘uniform’ strategy with 2 bins so that the bin edges are of
equal width. The KBinsDiscretizer function is fitted to
the training set only to avoid information leakage, and thus the
preprocessing procedure is repeated for each train/test split of
the dataset.

APPENDIX B
TUNING MAXIMUM DEPTH FOR IBM TREES

We compare the performance of IBM trees with three
different maximum depth strategies: fine-tuning, half strategy
of [25], and median strategy of FedGA. It is evident in Fig. 11
that there is no major difference between the strategies, with
the exception of the eyemvt dataset. However, tuned depth
still has the best overall performance, with ∆ averaged across
all datasets being −2.58, while the average for the median
strategy and half strategy is −3.16 and −3.75, respectively.

