
LanFL: Differentially Private Federated Learning
with Large Language Models using Synthetic

Samples
1st Huiyu Wu

Industrial Engineering and Management Sciences
Northwestern University

Evanston, USA
huiyuwu2025@u.northwestern.edu

2nd Diego Klabjan
Industrial Engineering and Management Sciences

Northwestern University
Evanston, USA

d-klabjan@northwestern.edu

Abstract—Federated Learning (FL) is a collaborative, privacy-
preserving machine learning framework that enables multiple
participants to train a single global model. However, the recent
advent of powerful Large Language Models (LLMs) with tens to
hundreds of billions of parameters makes the naive application
of traditional FL methods to LLMs impractical due to high
computational and communication costs. Furthermore, end users
of LLMs often lack access to full architectures and weights
of the models, making it impossible for participants to fine-
tune these models directly. This paper introduces a novel FL
scheme for LLMs, named LanFL, which is purely prompt-
based and treats the underlying LLMs as black boxes. We have
developed a differentially private synthetic sample generation
mechanism to facilitate knowledge sharing among participants,
along with a prompt optimization scheme that enables learning
from synthetic samples. Our extensive experiments demonstrate
that LanFL successfully facilitates learning among participants
while preserving the privacy of local datasets across various tasks.

I. INTRODUCTION

Federated Learning (FL) is a privacy preserving machine
learning scheme that allows many participants to train a single
global model without sharing their local training samples [1].
FL relies on participants sharing their local gradient updates or
models, and a central server or some decentralized framework
to aggregate the updates [2], [3]. Since only gradient updates
or models are shared, each client’s local data set privacy is
preserved. This is especially crucial nowadays as there are
increasing regulations on data sharing such as EU’s General
Data Protection Regulation [4] and the California Consumer
Privacy Act [5]. It has been applied in many fields including
finance, edge computing, and healthcare. However, despite its
popularity, FL still faces challenges in privacy threats, hetero-
geneity, and communication overhead, and new paradigms for
FL are needed [6], [7].

Large Language Models (LLMs) are sophisticated deep
neural networks based on transformer architectures, designed
to comprehend, generate, and manipulate natural language
[8], demonstrating performances that approach, and some-
times exceed, human capabilities, LLMs excel in tasks such
as logical reasoning, translation, and complex examinations
[9]. Their exceptional abilities render them applicable across

various domains similar to those in Federated Learning (FL),
including customer service, finance, law, and education [10].
Despite their widespread adoption and impressive functional-
ities, LLMs are associated with significant safety concerns,
including risks of fraud, impersonation, and misinformation
dissemination [11]. Consequently, developers restrict access
to the models’ weights, architecture, and parameter details
for prominent LLMs like Chat-GPT 4, Claude 3, and Gemini
[9], [12], [13]. It is also worth noting that with these models
containing tens or hundreds of billions of parameters, trans-
mitting complete models several times or conducting extensive
fine-tuning is often impractical. Instead, prompt engineering
emerges as a viable alternative to leverage these models
effectively [14]. Prompts serve as inputs to LLMs; it has
been demonstrated that the outputs from these models are
highly sensitive to the nature of the prompts provided. Well-
constructed prompts enhance the relevance, logical coherence,
and accuracy of the outputs.

At a first glance, the application of FL with LLMs ap-
pears impractical. Federated Learning primarily relies on local
gradient updates or local models; however, in the context of
LLMs, users often lack access to the model weights. Further-
more, even if FL clients could access the weights of LLMs,
computing gradients over numerous iterations would not be
computationally efficient. Additionally, the significant com-
munication overhead associated with transmitting potentially
hundreds of billions of parameters renders the process ineffi-
cient. Nevertheless, there are some methods available to enable
FL for LLMs, which typically involve introducing trainable
parameters into the LLM architecture while maintaining the
pre-trained components unchanged [15], [16]. It is important
to recognize that although these existing LLM FL methods
address the issues of large communication and training costs,
they still necessitate knowledge of the specific architecture
and parameters of the underlying LLM. This requirement
restricts the practical applications of such approaches. For
instance, a consortium of medium-sized hospitals is likely not
to prefer to invest in open source LLMs and going down a
rabbit hole to buy costly GPUs and hire experts. Instead, they

may opt to utilize the best pre-trained LLMs available from
large technology companies, where the architectural details
and parameters remain confidential.

There are also several notable distinctions between FL
with LLMs and traditional FL approaches. Traditionally, FL
typically involves training a model from scratch, whereas FL
with LLMs generally starts with pre-trained LLMs, focusing
on fine-tuning these models for specific tasks rather than
training new ones from the ground up. Another key difference
lies in model ownership and accessibility: in conventional FL,
clients own the models and have full access to all model
aspects. However, this is not always the case with FL involving
LLMs. For instance, banks participating in an FL scheme using
LLMs might opt to utilize powerful pre-trained models from
third-party providers without the intention or need to train their
own models, thereby lacking access to the model’s architecture
and weights. Additionally, unlike traditional FL where often
clients use the same models, in the LLM context, different
participants may choose to use various third-party models
based on factors such as cost or other specific requirements.

Inspired by the capability of LLMs to learn from contextual
examples in prompts and their ability to generate synthetic
samples [17], [18], we propose a new LLM FL scheme,
LanFL, which aims to bridge the gap between FL and LLMs.
LanFL is designed to enable participants to engage in FL
without requiring access to the underlying architecture and
weights of the LLM. On a high level, in one LanFL step,
participants first create synthetic samples using their local
LLMs. Then the participants generate prompts using the
synthetic samples and their own knowledge. The next step
is participants sharing the prompts to other participants. Since
LLMs can learn from prompts, combining local data and the
prompts with synthetic data received, participants can improve
model performance without accessing other participants’ local
data sets. We also show that LanFL is differentially private.
In the experiments LanFL performs well when clients have
heterogeneous data sets.

Our contributions are as follows. First, to the best of our
knowledge, we are the first work enabling FL for LLMs using
only prompts, without accessing and modifying underlying
weights and architectures. This advancement is crucial as it
circumvents the need for participants to access the weights
directly, thereby also allowing for the use of different un-
derlying LLMs by various participants. Second, we introduce
an innovative method for generating and selecting synthetic
samples that ensures their effectiveness while also confirming
that they are sufficiently distinct from the original training
samples. Additionally, our mechanism for synthetic sample
generation is designed to be differentially private. Third, our
experimental results indicate that LanFL performs robustly
across a variety of datasets, and different levels of data
heterogeneity.

This paper is organized as follows. In Section 2 we examine
related works, while in Section 3 we explain the details of
LanFL operations and study the differential privacy proper-
ties of LanFL. In Section 4 we explore our comprehensive

experimental results, and finally in Section 5 we present the
conclusions.

II. RELATED WORKS

There are a few works focusing on FL of LLMs, and all
requires full knowledge of the architecture of the underlying
model. Che et al propose FedPepTAO [15] which utilizes
techniques in prefix-tuning and adaptive optimization. On
a high level, participants perform prefix-tuning by adding
trainable parameters to each layer of the LLM [19]. In each
round a set of participants only update prompt parameters of
specific layers. FedPepTAO is parameter efficient since each
round only a few layers of prefixes are updated, and it does not
modify the weights of the underlying LLM. However, it still
requires full knowledge of the underlying LLM architecture
and does not scale well as future LLMs increase in the number
of layers and parameters. Work by Hou et al, [20], employs
differentially private synthetic samples to fine-tune LLMs.
Their approach generates synthetic samples through a multi-
round process using only textual data, and the fine-tuning step
requires knowledge of the underlying model architecture. In
contrast, our approach generates synthetic samples in a single
round and accommodates numerical features. Additionally, we
leverage in-context learning techniques, which eliminate the
need for knowledge of the underlying model architecture.

Similarly, Kim et al propose using adapter mechanisms to
LLMs for FL [16]. Specifically, they add adapter layers such
as LoRA [21] into the LLM architectures, and only fine-tune
the parameters of added layers while keeping the pre-trained
LLM parameters frozen. Fan et al implement this framework
named FATE-LLM that utilizes trainable adapters [22]. Again,
this approach requires knowing the exact architecture of the
underlying LLM and all experiments are run with not the
larges LLMs having less than 10 billion parameters.

Another idea for FL LLM is proposed by Su et al [23]. The
TITANIC framework they propose first splits the LLM into
multiple parts by layers, and each participant receive a part of
the LLM. FL is facilitated by having each participant perform
a forward pass, sending intermediate outputs to the next par-
ticipant who possesses the subsequent segment, followed by a
backward loss propagation step. While TITANIC demonstrates
superior performance compared to previous frameworks, it is
not without challenges; specifically, it encounters issues related
to privacy and significant communication overhead. In con-
trast, our LanFL approach is based on the exchange of prompts
not requiring weights, which circumvents these issues, offering
a more efficient and secure method of collaborative learning.

Prompting techniques are also closely related to our work.
They involve using specific inputs to elicit high-quality and
accurate responses from LLMs. The effectiveness of these
outputs is heavily dependent on the construction of well-
designed prompts [14]. Few-shot prompting [17] supplies
LLMs with example inputs that guide the model to produce
outputs that are not only formatted like the examples but
also contextually relevant to the topics addressed by these
examples. Chain-of-thought (CoT) prompting, another related

technique, encourages LLMs to articulate a sequence of logical
reasoning steps before arriving at a final answer. This method
has been shown to enhance the logical coherence of the
outputs and is particularly effective in logic reasoning tasks
[24]. Building on the CoT framework, approaches such as
self-consistency [25] and tree-of-thought [26] recognize that
different reasoning pathways can lead to correct answers.
These methods allow LLMs to generate multiple reasoned
responses before selecting the most appropriate final output,
thus enhancing the robustness and reliability of the model’s
decision-making process.

The generation of synthetic datasets using LLMs represents
a key advancement upon which our LanFL relies. Frame-
works such as ZeroGen, ProGen, and SuperGen facilitate
production of synthetic datasets by conditioning on labels and
employing task-specific models to iteratively select and filter
synthetic samples [27], [28], [29]. These processes operate in-
dependently of human-annotated samples and treat pre-trained
LLMs as black boxes. Nonetheless, these frameworks primar-
ily focus on textual data, whereas LanFL also accommodates
numerical data. Furthermore, in FL operations, participants
typically possess well-annotated samples, a feature that LanFL
leverages. ClinGen represents another LLM-based framework
for generating synthetic samples, specifically targeting medical
tasks; however, it does not generalize to numerical data [30].
Borisov et al introduce GReaT, a framework designed for
generating tabular data [18]. We build upon this framework
by incorporating advanced prompting techniques to enhance
its efficacy with numerical tabular data.

III. LANFL
A. LanFL Operations

As discussed in the introduction, FL with LLMs are chal-
lenging because of the large model sizes and black-box
nature of the models. Our proposed LanFL method addresses
these challenges and is the first to employ a prompt-based
framework for FL with LLMs. It enables clients to engage in
FL while treating the underlying LLMs as black boxes. As
shown in Figure 1, at a high level, LanFL consists of three
steps: generate synthetic samples, share knowledge, and learn
using prompts. LanFL steps start with each participant creating
synthetic samples and generate logic solutions to the synthetic
samples based on its local training samples. The next step is to
share the synthetic samples with labels and reasoning among
all other participants. Finally, participants add all synthetic
samples to the local training set, and learn from the samples by
optimizing for the best prompt and use the optimized prompt
for downstream tasks.

In detail, the initial step involves participants generating
synthetic samples using LLMs with few-shot prompting.
Specifically, participants randomly select a few local sam-
ples that include chain-of-thought reasoning and use these
as examples to prompt the LLM to generate new samples.
This process is repeated to create a synthetic dataset. The
chain-of-thought reasoning for the local samples can be either
manually obtained or generated by prompting the LLM as

Fig. 1: LanFL Operations. Step 1: Clients generate synthetic
data sets by prompting LLMs using local data sets. Step 2:
Clients share the synthetic data sets among themselves. Step
3: Clients learn the best prompt utilizing the synthetic data
sets received.

a separate pre-processing step. Consequently, the resulting
synthetic samples contain not only features and labels but
also the chain-of-thought reasoning, making them immediately
usable as examples in prompts. The second step involves the
sharing of knowledge, wherein participants exchange the syn-
thetic data sets they have generated. Since these synthetic data
sets encompass chain-of-thought reasoning derived from the
participants’ local samples, the act of sharing these data sets
inherently facilitates the dissemination of knowledge. Finally,
upon receiving synthetic datasets from other participants, the
clients aim to learn from these samples by designing few-
shot prompts that optimize in-context learning. The learning
is relied on LLMs’ in-context learning capabilities [31], and
by utilizing the synthetic samples containing knowledge from
other participants, privacy is achieved.

B. Synthetic Samples

A key element in the LanFL framework is the generation
of synthetic samples. Inspired by chain-of-thought and few-
shot prompting [17], [24], we propose the following two-step
mechanism to generate synthetic samples. For a participant
with local data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)},
and an LLM L with temperature set to 0, the first step is
to generate the chain of thought reasoning ri for each of the
sample (xi, yi). Specifically

ri = L(Mr(xi, yi)).

Here Mr can be any function that converts (xi, yi) into prompt
so that the LLM outputs a chain-of-thought reasoning ri for
specific sample (xi, yi). Note that xi, yi, ri and the output of
function Mr are all sequences of tokens. The first step can be
skipped if the participant has readily available reasoning steps
in the local data set or it decides to manually provide chain-
of-thought reasoning for all the local samples. During the
second step, the participant randomly selects k samples, Dk =

Fig. 2: Example prompt used to generate synthetic sample
(Output of Msyn)

{(xs1 , rs1 , ys1), (xs2 , rs2 , ys2), . . . , (xsk , rsk , ysk)}, and uses
these samples as examples in the prompt to generate a syn-
thetic sample

synDk
= L(Msyn(Dk)).

We can then extract (xDk
, rDk

, yDk
) from synDk

. Here Msyn

is a prompt template that converts the samples into a few-shot
prompt that instructs the LLM to generate a synthetic sample.
To create the synthetic data set, the participant simply repeats
the previous step to reach the desired number of synthetic
samples.

To be more concrete, Mr can simply list the tokens xi,
and asks the LLM why yi is the answer. For example, the
output of Mr can be: ‘Weng earns $12 an hour for babysitting.
Yesterday, she just did 50 minutes of babysitting. How much
did she earn? Think step by step and answer why she earned
$10.’ For questions that require domain knowledge to generate
logic reasoning, the participant can first manually provide
logical reasoning for a few selected samples, add background
knowledge, and use them as examples in prompt and instruct
the LLM to provide reasoning for other samples. For synthetic
sample generation, Figure 2 shows an example output of
Msyn using the CommonsenseQA data set [32]. The sentences
marked gray are xi and yi, sentences marked green are chain-
of-thought reasoning, and the remaining sentences are meta
prompt and formatting added by Msyn. It is important to
note that by incorporating logical reasoning and facts into the
examples within the prompt, the resulting synthetic samples
encompass not only the questions and their answers but
also the associated logical reasoning steps. This approach is
more efficient, as it allows for the simultaneous generation of
synthetic samples and their logical reasoning, rather than pro-
ducing the synthetic samples first and subsequently generating
the reasoning as a separate step.

For numerical features, we need one pre-processing step
to convert the features into tokens that LLMs can understand
better. Instead of the simple textual encoder in GReaT where
we add ‘is’ between feature name and the feature value
[18], we require the participant to connect the features into
a cohesive paragraph. It may require domain knowledge for
specific tasks. As an example, for features concerning a credit
card holder’s information, instead of using ‘Gender is male,
education is high school, age is 30, payment is 400, usage is
600,’ we use ‘A high-school educated 30 year-old male has
used $600 of his credit and has made a $400 payment.’ as xi.

Another consideration for a participant is that of all the
synthetic samples created, the participant is recommended to
discard samples that are similar to those in its local data
set. For example, for each of the synthetic sample xsyn,
the participant should compute n BLEU scores b1, b2, . . . bn
for each of the local sample x1, x2, . . . xn [33]. Then the
participant can set a threshold t depending on the application
and discard any synthetic samples that have bmax > t
where bmax = max(b1, b2, . . . bn). For numerical features, the
participant can utilize the L2 distance between the feature
vectors to determine whether or not to discard any of the
synthetic samples.

C. Differential Privacy

Differential Privacy is a formal definition of privacy and
it characterizes if an output mechanism leaks information if
the underlying data set differs by one sample [34]–[36]. To
establish our synthetic sample generation method is differential
privacy, we first formalize the synthetic sample generation
mechanism.

Mechanism 1. We define the random synthetic sample gen-
eration mechanism f as follows. Let us have two numbers
N, k ∈ N, and N ≥ k + 1. The mechanism f generates
synthetic sample f(D) = xsyn given a data set D ∈ dom(f)
by following the following two steps. First, we select A ⊆ D
such that |A| = k by uniform randomly selecting elements one
by one from D without replacement. Then, we apply function L
to A to generate L(A) = xsyn, where L(·) is any deterministic
function that outputs a sequence of tokens. We also restrict the
dom(f) to satisfy D ∈ dom(f), |D| ≥ N .

A technicality is that here the function L applies to the set
A, thus we are implicitly assuming the order of the samples
in A does not matter. The results are similar if ordering of the
elements in A matters (epsilon and delta take different values,
but the proof is similar). Note that L is deterministic and the
only randomness of f comes from the sampling of the subset
A. The restriction on the domain of f means we can only
apply the mechanism if we have a data set that has more than
N samples. In the FL with LLM, we can pick N to be the
smallest number of samples of the data sets among the FL
participants.

Note that the mechanism f is the same as the procedure
to generate one synthetic sample in LanFL. Specifically, in
LanFL the set A is the data set containing the k random local

examples, and becuase we set the temperature of the LLM to
0, Msyn and the LLM is deterministic function L. Now we
introduce the differential privacy result.

Theorem 1. Mechanism 1 is (δ, ϵ) differentially private for
δ = k

N+1 and ϵ = 0. Specifically, for any two data sets D1, D2

in the domain of f that differ by only one element by addition
or deletion, and any subset S in the range of f we have

P (f(D1) ∈ S) ≤ k

N + 1
+ e0P (f(D2) ∈ S).

Theorem 1 shows that our synthetic sample generation
mechanism for a single synthetic sample is (δ, ϵ) differentially
private by definition. Generally we have N ≫ k meaning
our sample size is much greater than the number of samples
in the prompt used to generate synthetic samples, therefore
δ is small indicating a strong privacy guarantee. The proof
of Theorem 1 is in the Appendix. In practice, participants
generate several synthetic samples, and we have the following
Corollary showing generating w synthetic samples is also
differentially private.

Corollary 1. We call fw the process of performing Mechanism
1 for a total of w times generating w synthetic samples. Then
Mechanism fw is (δ, ϵ) differentially private for δ = kw

N+1 and
ϵ = 0. Specifically, for any two data sets D1, D2 in the domain
of fw that differ by only one element by addition or deletion,
and any subset S in the range of fw we have

P (f(D1) ∈ S) ≤ kw

N + 1
+ e0P (f(D2) ∈ S).

This Corollary follows from the Sequential Theorem in [35].
It is important to note that, in practical applications, we gener-
ate only w synthetic samples, which usually represents a small
fraction of the overall size of the dataset N . Therefore, kw

N+1
is small, indicating a strong differential privacy guarantee.

D. Prompt Optimization

The last step in the LanFL operations is participants opti-
mizing for a best prompt utilizing all the synthetic samples
received from other participants in addition to their local data
sets. It is known that LLMs are sensitive to input prompts,
for example, the number and ordering of the examples in the
prompt matters [31], [37]–[39]. Therefore, by optimizing the
number of samples and portions of synthetic samples used as
examples in a prompt, participants should learn from other
participants’ samples.

It is impractical to iterate over all the combinations of
samples and synthetic samples in the prompt. Therefore, we
propose Algorithm 1, a greedy optimization method. First, the
participant sets aside a portion of the local data set as a test
set, and let the remaining samples be a training set. Then
the participant selects a different number of samples from the
training set as examples in the prompt and evaluates the results
on the test set, and finds the optimal number of samples to
include in the prompt (lines 2-10). After collecting all the
synthetic samples and using the best number of samples n1 in
the prompt, the participant finds the best number of synthetic

Algorithm 1 LanFL Operation

1: Initialize training set Xtrain and test set Xtest

2: for n = 1, 2, 3, . . . do
3: Set cost cn = 0
4: for Each test sample xt ∈ Xtest do
5: Randomly select xi1 , xi2 . . . xin ∈ Xtrain

6: Compute cost c using some metric between
Ytrain and Ypredicted

7: Update cost cn += c
8: end for
9: end for

10: Record optimal cost ctrain = min{ci|1 ≤ i ≤ n}
11: Optimal number of samples in prompt n1 =

argmini{ci|1 ≤ i ≤ n}
12: Collect synthetic samples Xsyn

13: for n = 1, 2, 3, . . . n1 do
14: Set cost cn = 0
15: for Each test sample xt ∈ Xtest do
16: Randomly select xi1 , xi2 . . . xin ∈ Xsyn

17: Randomly select xin , xin+1
. . . xin1

∈ Xtrain

18: Compute cost c using some metric between
Ytrain and Ypredicted

19: Update cost cn += c
20: end for
21: end for
22: Record optimal cost csyn = min{ci|1 ≤ i ≤ n}
23: Optimal synthetic samples in prompt n2 =

argmini{ci|1 ≤ i ≤ n}

samples n2 to use in prompts by testing on the test set again
(lines 12-21). Algorithm 1 summarizes the operations to obtain
the number of total samples and the number of synthetic
samples in the prompt. The cost can be interpreted as the
number of incorrect answers or the mean squared error for
continuously valued tasks.

Another benefit of LanFL operation is by comparing the
cost of using the optimal number of training samples ctrain
and the cost of using the optimal number of synthetic samples
with training samples csyn, we can examine the effectiveness
of LanFL operations. If csyn − ctrain > 0, then we know
it is beneficial to receive the synthetic samples from other
participants and LanFL achieves the goal of learning. Finally,
we want to point out that loops in lines 4 and 15 should be
repeated a few times to reduce the randomness in results.

IV. EXPERIMENTS

A. LanFL Experimental Setup

The goal of the experiments is to show LanFL steps enable
learning, therefore in the following experiments we aim to
show after receiving synthetic samples from other clients, that
a participant can obtain better results by adjusting prompts
compared to using only its local data set. For each of the
experiments, we first set aside 10% of the samples as the
validation set and 10% of samples as the test set, then
partition the remaining data set into 10 subsets representing the

participants. Each of the participants uses the local samples to
generate 100 synthetic samples with k = 3. We aggregate the
synthetic samples together and perform Algorithm 1, LanFL
operation, on the validation set to select the best n1 and n2,
and finally, we test the performance on the test set using
the optimal mixture of synthetic samples. We repeat 3 times
for each of the experiments due to the stochastic nature of
Algorithm 1. The reported numbers are expected values with
standard deviations in select charts and tables. Note that we
experimented with different number of participants and prompt
samples k, and the findings are similar. We utilize Gemini-
1.5-Flash [13], Llama3.2-3B [40], and Mixtral-8×7B [41] in
our experiments. These models exhibit strong performance and
efficiency, encompass both transformer-based and mixture-of-
experts architectures, and are readily accessible for repro-
ducibility and further research. The Gemini experiments are
run on Google Colab, and other models are run with Ollama
locally with Nvidia GeForece RTX 3080Ti GPU and Intel i9-
12900k CPU.

We test LanFL on the StrategyQA, UCI Credit Card De-
fault dataset [42], and the eICU critical care database [43].
StrategyQA, a challenging textual reasoning dataset, assesses
LanFL’s ability to handle complex language and strategic
reasoning. The UCI Credit Card Default dataset, with its
numerical features, evaluates LanFL’s performance in working
with numerical features. The eICU database, a real-world
dataset, tests LanFL’s ability to handle complex, real-world
data, particularly in the FL amenable healthcare setting. By
combining these diverse datasets, we aim to demonstrate
LanFL’s versatility and effectiveness across a wide range
of tasks and data types. Additionally, the eICU experiment
highlights the potential of LanFL to contribute to real-world
applications.

B. LanFL Results

The experimental results are presented in Table I. We report
the F1 scores and the standard deviations in parentheses of
the models on the test set using LanFL, as well as the F1
scores achieved through in-context learning using only the
original samples. The F1 score is selected as our evaluation
metric due to its ability to address class imbalance and its
alignment with our primary objective: accurately identifying
credit card defaults and patients in critical conditions. We
use the F1 score for StrategyQA as well for consistency. We
also include a comparison with a random guess benchmark to
validate that the LLMs effectively leverage the information
in the samples and their inherent capabilities. The results
indicate that all tested LLMs exhibit improved performance
across all tasks when synthetic samples are incorporated into
the prompts through LanFL optimization. This demonstrates
that synthetic samples contain valuable information from other
clients that can aid in answering test samples. Furthermore,
LanFL enables information sharing among participants while
preserving privacy. Notably, the LanFL-enhanced results sig-
nificantly outperform the random guess benchmark.

TABLE I: Experimental Results (F1 score %)

Gemini Mixtral Llama Random
Guess

StrategyQA-LanFL 55.27 63.67 59.78 46.72
(6.76) (1.05) (1.78) –

StrategyQA 53.29 63.03 57.02 46.72
(10.23) (2.26) (1.74) –

UCI-LanFL 32.07 38.78 37.21 22.12
(2.29) (1.33) (0.71) –

UCI 13.69 14.52 30.31 22.12
(3.78) (2.08) (1.87) –

eICU-LanFL 16.74 17.24 24.85 8.33
(0.52) (3.88) (1.84) –

eICU 14.54 15.54 17.72 8.33
(1.05) (2.79) (1.56) –

Fig. 3: LanFL improvements

Another key finding is that no specific model consistently
performs the best across all tasks, although LanFL appears to
be particularly beneficial for certain tasks. Figure 3 illustrates
the F1 score improvements achieved using LanFL compared
to in-context learning with original samples. When combined
with the full results, we observe that no single model out-
performs the others across all tasks. However, an intriguing
observation from the same plot is the variation in LanFL’s per-
formance across tasks. Specifically, LanFL performs best on
the UCI credit card default dataset and worst on StrategyQA.
We attribute this to the nature of StrategyQA, which relies
more on knowledge of specific facts rather than the shared
information or logic contained in the samples from other
participants. As a result, synthetic samples provide limited
benefits in this context. Conversely, credit card defaults can
occur under diverse circumstances, and the additional infor-
mation and reasoning derived from other samples significantly
benefit the LLMs. Lastly, we believe there is potential for
greater LanFL benefits on the eICU dataset by utilizing LLMs
with more extensive medical knowledge.

C. Effect of Different LLMs at Client Level

In real-world settings, it is unlikely that all clients use the
same LLM for their tasks. Different clients often select LLMs
of varying sizes and capabilities, tailored to their specific

Fig. 4: LanFL with Different Models

business needs. In this section, we explore the impact of this
more realistic scenario—where different clients use different
LLMs—on our LanFL operation. Using a setup similar to
Section IV-A, we partition the training dataset into 10 subsets
representing the participants. However, in this case, each par-
ticipant is randomly assigned an LLM among Gemini, Mixtral,
or Llama. Each client generates 100 synthetic samples, which
are aggregated, and all clients subsequently perform LanFL
optimization. Clients with the same LLM are grouped together,
and we report the average final F1 score on the test set per
group using the StrategyQA dataset.

Figure 4 summarizes the F1 scores from experiments where
clients either use the same LLM or different LLMs. The first
key finding is that the relative performance ranking of the
models remains consistent regardless of whether clients use
the same or different LLMs. This suggests that the majority
of learning in LanFL occurs during the optimization process,
which is largely influenced by the LLMs used by the clients.
Consequently, the quality of the synthetic samples plays a
less significant role. This has a practical benefit for employing
the LanFL algorithm, as those with more capable LLMs can
maintain their edge over clients with less capable LLMs.
Additionally, clients need not be overly concerned about
providing higher-quality synthetic samples to clients with less
powerful LLMs.

Another observation is that performance tends to be slightly
lower when clients use mixed LLMs compared to when all
clients use the same LLM. We attribute this to the fact that
LLMs are better at learning from synthetic samples generated
by themselves than from those generated by other LLMs,
which may differ in style and characteristics.

D. Synthetic Samples Evaluation

We use another experiment to show the feasibility of using
synthetic samples for our purpose. We evaluate our synthetic
samples using two criteria. First, how different are they from
the training samples, and second, how good are they in
downstream tasks. In this section, since the synthetic samples

Fig. 5: BLEU scores distributions for synthetic samples and
paraphrased training samples

are purely text-based, we use PaLM 2 as the underlying LLM,
given that it is a text-only model and serves as the foundation
for Gemini. We use StrategyQA as our dataset [44], [45] and
generate synthetic samples with k = 3.

Although we have already showed analytically differential
privacy of our synthetic sample generation mechanism, the
property only states that probabilistically one cannot infer
whether one specific sample is in the training data set based
on a synthetic sample. However, there is no guarantee that
synthetic samples are different from the training samples. To
show our mechanism produces sufficiently different samples,
we compute bmax for each synthetic sample in Section III-B.
Additionally, we also paraphrase the training samples used to
generate synthetic samples using the same LLM and compute
bmax for each of the paraphrased sample as a benchmark.
Figure 5 shows the distribution of bmax of synthetic and
paraphrased samples. We find not only the synthetic samples
are different from the original samples by having small BLEU
scores, but also significantly different from paraphrased train-
ing samples as well.

To quantify how good the synthetic samples are, we propose
the following experiment. We test the performance of LLM
on the same task using the following 4 different prompts,
zero-shot no prompt, three-shot using training set samples
with CoT reasoning, three-shot using synthetic samples with
CoT reasoning, and three-shot with cohesive but irrelevant
paragraphs. The final accuracies are 69.75%, 74.67%, 74.76%,
and 70.20% respectively. We find that using synthetics samples
as examples in the prompt show a similar performance to
using training samples, and they are both better than not
using examples or using irrelevant examples. Since the goal
of LanFL is to use the synthetic samples to represent the
knowledge in the training samples, a similar performance
indicate that synthetic samples are indeed good for LanFL
operations.

Fig. 6: Probability of success

E. Evaluation of Differential Privacy

To investigate differential privacy in LanFL operations,
particularly in synthetic sample generation, we designed an
experiment to simulate the following scenario. Consider a
participant with a dataset D of size N and a privacy auditor
who possesses a percentage p copy of this dataset. The privacy
auditor then introduces a new sample from a different partici-
pant, adding it to the participant’s dataset D and increasing its
size to N + 1, resulting in a new dataset D′. The participant
executes the LanFL synthetic sample generation procedure M
times with respect to D′, producing w synthetic samples in
each run, with each sample generated using k original samples.
The privacy auditor’s goal is to determine, across the M runs,
the proportion of instances in which they can identify with
certainty that the w synthetic samples were generated using
D′ instead of D. Specifically, the privacy auditor generates all
possible synthetic samples from D. For each of the M runs, if
the w synthetic samples are fully contained within the possible
synthetic samples of D, the auditor assumes the participant
is using D. Conversely, if the w synthetic samples include
instances not possible from D, the auditor concludes that the
dataset in use is D′. This process serves as a verification
method for the differential privacy mechanism introduced in
Section III-C, aiming to detect whether the LanFL mechanism
leaks information when the underlying dataset differs by a
single sample. Based on our analysis, the probability of such
leakage is theoretically bounded by δ = kw

N+1 .
We conducted experiments by varying N and the percentage

p, setting w = 100 and k = 3 consistent with LanFL
experimental setup in the previous sections. Figure 6 illustrates
the theoretical upper bound δ for differential privacy across
different values of N , alongside the observed probability
of successful detection by the privacy auditor. Our findings
show that the actual probabilities are consistently below the
theoretical values. Furthermore, as N increases or p decreases,
the probability of the privacy auditor’s success drops signifi-
cantly, reaching levels below 5%. It is important to highlight
that our experimental setup is intentionally biased against the
participant, as the privacy auditor is assumed to have access to

portions of an exact replica of the dataset and full knowledge
of the synthetic sample generation procedure. Despite these
unfavorable conditions, our results demonstrate that LanFL
operations maintain differential privacy in practical scenarios.

V. CONCLUSION

In this study, we introduced LanFL, a prompt-based FL
scheme specifically designed for LLMs. LanFL offers the ad-
vantage of treating models as black boxes, enhancing its appli-
cability in a wide range of real-world scenarios. This scheme
integrates breakthroughs in synthetic sample generation with
LLMs and sophisticated prompt engineering techniques. As an
FL scheme, LanFL safeguards participant privacy through our
differentially private synthetic sample generation mechanism
and facilitates learning via optimized prompting strategy. Our
experiments demonstrate that the proposed LanFL scheme
effectively facilitates learning from all participants. Notably,
utilizing synthetic samples from other participants enhances
test set performance. The results are also robust across various
popular LLMs on different tasks.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in International Conference on Artificial Intelligence
and Statistics, 2016.

[2] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: Vision, hype and reality for data
privacy and protection,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 4, p. 3347–3366, 2023.

[3] Z. Wang and Q. Hu, “Blockchain-based federated learning: A compre-
hensive survey,” arXiv preprint arXiv:2110.02182, 2021.

[4] J. P. Albrecht, “How the GDPR will change the world,” European Data
Protection Law Review, vol. 2, no. 3, 2016.

[5] P. Bukaty, The California Consumer Privacy Act (CCPA): An implemen-
tation guide. IT Governance Publishing, 2019.

[6] J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A survey on
federated learning: Challenges and applications,” International Journal
of Machine Learning and Cybernetics, vol. 14, pp. 513–535, 2023.

[7] H. Wu and D. Klabjan, “Robust softmax aggregation on blockchain
based federated learning with convergence guarantee,” IEEE Interna-
tional Conference on Omni-layer Intelligent Systems, 2024.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, 2017, p. 6000–6010.

[9] OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[10] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of
large language models,” arXiv preprint arXiv:2307.06435, 2024.

[11] M. Mozes, X. He, B. Kleinberg, and L. D. Griffin, “Use of LLMs for
illicit purposes: Threats, prevention measures, and vulnerabilities,” arXiv
preprint arXiv:2308.12833, 2023.

[12] Anthropic, “The Claude 3 model family: Opus, Sonnet, Haiku,”
https://www.anthropic.com/claude, 2024.

[13] G. T. Google, “Gemini: A family of highly capable multimodal models,”
arXiv preprint arXiv:2312.11805, 2024.

[14] B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential
of prompt engineering in large language models: a comprehensive
review,” arXiv preprint arXiv:2310.14735, 2023.

[15] T. Che, J. Liu, Y. Zhou, J. Ren, J. Zhou, V. Sheng, H. Dai, and D. Dou,
“Federated learning of large language models with parameter-efficient
prompt tuning and adaptive optimization,” in Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing,
2023, pp. 7871–7888.

[16] G. Kim, J. Yoo, and S. Kang, “Efficient federated learning with
pre-trained large language model using several adapter mechanisms,”
Mathematics, vol. 11, 2023.

[17] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

[18] V. Borisov, K. Seßler, T. Leemann, M. Pawelczyk, and G. Kasneci,
“Language models are realistic tabular data generators,” in The Eleventh
International Conference on Learning Representations, ICLR, 2023.

[19] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, 2021, pp. 4582–
4597.

[20] C. Hou, A. Shrivastava, H. Zhan, R. Conway, T. Le, A. Sagar, G. Fanti,
and D. Lazar, “PrE-Text: training language models on private federated
data in the age of LLMs,” in Proceedings of the 41st International
Conference on Machine Learning, 2024.

[21] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in International Conference on Learning Representations, 2022.

[22] T. Fan, Y. Kang, G. Ma, W. Chen, W. Wei, L. Fan, and Q. Yang,
“FATE-LLM: A industrial grade federated learning framework for large
language models,” arXiv preprint arXiv:2310.10049, 2023.

[23] N. Su, C. Hu, B. Li, and B. Li, “Titanic: Towards production federated
learning with large language models,” IEEE INFOCOM, 2024.

[24] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning
in large language models,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, 2022.

[25] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” in The Eleventh International
Conference on Learning Representations, 2023.

[26] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. R.
Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” in Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[27] J. Ye, J. Gao, Q. Li, H. Xu, J. Feng, Z. Wu, T. Yu, and L. Kong, “Zero-
gen: Efficient zero-shot learning via dataset generation,” in Conference
on Empirical Methods in Natural Language Processing, 2022.

[28] J. Ye, J. Gao, Z. Wu, J. Feng, T. Yu, and L. Kong, “ProGen: Progressive
zero-shot dataset generation via in-context feedback,” in Findings of
the Association for Computational Linguistics: EMNLP 2022, 2022, pp.
3671–3683.

[29] Y. Meng, J. Huang, Y. Zhang, and J. Han, “Generating training data
with language models: Towards zero-shot language understanding,” in
Advances in Neural Information Processing Systems, vol. 35, 2022, pp.
462–477.

[30] R. Xu, H. Cui, Y. Yu, X. Kan, W. Shi, Y. Zhuang, M. D. Wang, W. Jin,
J. Ho, and C. Yang, “Knowledge-infused prompting: Assessing and
advancing clinical text data generation with large language models,” in
Findings of the Association for Computational Linguistics: ACL 2024,
2024, pp. 15 496–15 523.

[31] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu,
B. Chang, X. Sun, L. Li, and Z. Sui, “A survey on in-context learning,”
in Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, 2024, pp. 1107–1128.

[32] A. Talmor, J. Herzig, N. Lourie, and J. Berant, “CommonsenseQA: A
question answering challenge targeting commonsense knowledge,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, Jun. 2019, pp. 4149–4158.

[33] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, 2002, p.
311–318.

[34] C. Dwork, “Differential privacy,” in Automata, Languages and Program-
ming, 2006, pp. 1–12.

[35] Z. Ji, Z. C. Lipton, and C. Elkan, “Differential privacy and machine
learning: a survey and review,” arXiv preprint arXiv:1412.7584, 2014.

[36] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation, 2008, pp. 1–19.

[37] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr, “Quantifying language
models’ sensitivity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting,” in The Twelfth
International Conference on Learning Representations, 2024.

[38] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, “An explanation
of in-context learning as implicit bayesian inference,” International
Conference on Learning Representations, 2022.

[39] T. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate
before use: Improving few-shot performance of language models,” in
International Conference on Machine Learning, 2021.

[40] MetaAI, “The Llama 3 herd of models,” arXiv preprint
arXiv:2407.21783, 2024.

[41] MistralAI, “Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.
[42] I.-C. Yeh, “Default of Credit Card Clients,” UCI Machine Learning

Repository, 2016.
[43] T. Pollard, A. Johnson, J. Raffa, L. Celi, R. Mark, and O. Badawi, “The

eICU collaborative research database, a freely available multi-center
database for critical care research,” Scientific Data, 2018.

[44] Google, “PaLM 2 technical report,” arXiv preprint arXiv:2305.10403,
2023.

[45] M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant, “Did
Aristotle use a laptop? a question answering benchmark with implicit
reasoning strategies,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 346–361, 2021.

APPENDIX

A. Proof of Theorem 1

Proof. Consider two data sets D1, D2 that differ by only
one element by addition/deletion in the domain of mechanism
f . Without loss of generality, assume D1 = D2 ∪ {xa} for
some element xa and |D1| = c. We have |D2| = c− 1.

For any subset S in the range of mechanism f , let n1 be the
number of subset E ⊆ D2 such that |E| = k and L(E) ∈ S,
and n2 be the number of subsets E ⊆ D1 such that |E| =
k, xa ∈ E and L(E) ∈ S. Here n1 and n2 may or may not
be independent, but individually, their ranges are

0 ≤ n1 ≤
(
c− 1

k

)
, 0 ≤ n2 ≤

(
c− 1

k − 1

)
.

We then compute

P (f(D1) ∈ S) =
n1 + n2(

c
k

) , P (f(D2) ∈ S) =
n1(
c−1
k

) .
Taking the difference we have

P (f(D1) ∈ S)− P (f(D2) ∈ S) =

(c−1
k)
(ck)

n1 +
(c−1

k)
(ck)

n2 − n1(
c−1
k

)
=

c−k
c n2 − k

cn1(
c−1
k

)
≤

c−k
c

(
c−1
k−1

)
− k

c ∗ 0(
c−1
k

)
=

k

c
.

(1)

Additionally, we also have

P (f(D2) ∈ S)− P (f(D1) ∈ S)

=
n1(
c−1
k

) − n1 + n2(
c
k

)
≤ n1(

c−1
k

) − n1(
c
k

)
=

n1 − c−k
c n1(

c−1
k

)
=

k
cn1(
c−1
k

)
≤ k

c
.

(2)

Note that inequality (1) implies that P (f(D1) ∈ S) ≤ k
c +

e0P (f(D2) ∈ S), and inequality (2) implies that P (f(D2) ∈
S) ≤ k

c + e0P (f(D1) ∈ S). Therefore, for any two data sets
D1, D2 that differ by only one element by addition/deletion
in the domain of mechanism f , and for any subset S in the
range of mechanism f , we have

P (f(D1) ∈ S) ≤ k

m
+ e0P (f(D2) ∈ S),

where m = min(|D1|, |D2|)+ 1. By the restriction placed on
dom(f), min(|D1|, |D2|) ≥ N , we have m ≥ N + 1. Note
that k

m decreases in m for 0 < k < N + 1, therefore,

P (f(D1) ∈ S) ≤ k

N + 1
+ e0P (f(D2) ∈ S).

■

	Introduction
	Related Works
	LanFL
	LanFL Operations
	Synthetic Samples
	Differential Privacy
	Prompt Optimization

	Experiments
	LanFL Experimental Setup
	LanFL Results
	Effect of Different LLMs at Client Level
	Synthetic Samples Evaluation
	Evaluation of Differential Privacy

	Conclusion
	References

