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Abstract—Low-rank tensor estimation offers a powerful ap-
proach to addressing high-dimensional data challenges and can
substantially improve solutions to ill-posed inverse problems, such
as image reconstruction under noisy or undersampled conditions.
Meanwhile, tensor decomposition has gained prominence in
federated learning (FL) due to its effectiveness in exploiting
latent space structure and its capacity to enhance communication
efficiency. In this paper, we present a federated image reconstruc-
tion method that applies Tucker decomposition, incorporating
joint factorization and randomized sketching to manage large-
scale, multimodal data. Our approach avoids reconstructing
full-size tensors and supports heterogeneous ranks, allowing
clients to select personalized decomposition ranks based on
prior knowledge or communication capacity. Numerical results
demonstrate that our method achieves superior reconstruction
quality and communication compression compared to existing
approaches, thereby highlighting its potential for multimodal
inverse problems in the FL setting.

Index Terms—federated learning, image reconstruction, tensor
decomposition, communication compression, multimodal data

I. INTRODUCTION

In recent years, tensors (or high-order arrays) have gained
considerable traction in data analysis. A rich body of work
demonstrates the effectiveness of tensor decompositions in tasks
such as predictive modeling [1], [15], [28], image processing
[35], feature extraction [10], [26] and data fusion [19], [36],
which is the integration of data from different modalities
or sources. In particular, the underlying idea of data fusion
via tensor decomposition is the joint factorization concept of
different datasets into a common latent space.

Meanwhile, motivated by the substantial overhead and burden
of sharing large-scale data across multiple entities (such as
privacy concerns), Federated Learning (FL) has emerged as
an effective decentralized framework. By allowing clients to
collaboratively solve a training problem without transmitting
raw data, FL significantly reduces data transfer costs. One
of the earliest methods, Federated Averaging (FedAvg) [18],
exemplifies this approach by aggregating clients’ locally trained
model weights at the server and distributing the resulting global
model back to each client for the next training round. In the past

years, much efforts have been made to extend FL to scientific
applications such as tomographic reconstruction [3], [14], [30].
A recent approach, called FIRM [2], is proposed to enable
federated tomographic reconstruction from multimodal data by
harnessing the complementary relationship between modalities.
Furthermore, an increasing number of studies explore the
use of tensor decomposition in FL to leverage the benefits
of low-rank representations in a decentralized environment.
By factorizing model parameters, clients transmit smaller,
structured components rather than full-scale weights, thereby
mitigating the communication overhead while taking advantage
of the low-rank regularization.

In this work, we expand on the federated tomographic
problem in [2] by incorporating the Tucker decomposition.
Notably, inverse problems, such as tomographic reconstruction,
tend to be ill-posed (i.e., many local minima) due to limited data
[5], [35]. Low-rank regularization via tensor decomposition
helps constrain the solution space by leveraging the underlying
low-dimensional structure in the parameter and data space,
thereby suppressing noise and artifacts, ultimately improving
reconstruction quality [11], [24]. Thus, to enforce low-rank
regularization, our method employs a projected gradient descent
update for local clients, inspired by [1]. We further exploit the
power of tensor decomposition in addressing multimodal data
by utilizing joint factorization and randomized sketching in the
server aggregation scheme. Our Tucker-based framework is
able to significantly improve reconstruction quality and reduce
communication overhead. We summarize our contributions as
follows.

• We propose a joint factorization approach that stream-
lines the server aggregation process, eliminating the
need to reconstruct full-size tensors while preserving
orthogonality of Tucker factor matrices.

• We leverage randomized sketching to reduce the
server’s computational burden, facilitating large-scale
deployment in federated environments.

• Finally, we validate our method with numerical



simulations and achieve superior reconstruction quality
under noisy and undersampled settings. Moreover, our
method outperforms popular compression techniques
such as Top-k and sparse encoding. We also show that
with heterogeneous ranks, our method is still able to
maintain high quality reconstruction.

II. BACKGROUND AND RELATED WORKS

A. Tensor decomposition

Given a tensor X ∈ Rn1×n2...×nd , its matricization (i.e.,
mode-k unfolding) is the rearrangement of the kth dimension
into the first dimension of a matrix, and denoted by X(k) ∈
Rnk×Πd

i=1,i ̸=kni . A tensor can be characterized by its rank and
the (multilinear) rank of a tensor consists of the column rank of
its mode-k unfolding. Tensor-times-matrix (TTM) in mode-k
for tensor X ∈ Rn1×...×nd with matrix S ∈ Rnk×r is defined as
Y = X×kS. The result Y is a tensor of shape n1×...×nk−1×
r × nk+1 × ...× nd such that Y(i1, ..., ik−1, j, ik+1, ..., id) =∑nk

ik=1 X(i1, ..., ik, ..., id)S(ik, j), j ∈ [r]. Furthermore, given
Sk ∈ Rnk×rk , k ∈ [d], if Y = X×1S1×2 ...×dSd, the mode-k
unfolding Y(k) = SkX(k)(Sd⊗ ...⊗Sk+1⊗Sk−1⊗ ...⊗S1)

T

where ⊗ denotes the Kronecker product of two matrices.
Tensor representation is a powerful tool for handling complex

high-dimensional datasets and models. Among the many tensor
decompositions, Tucker decomposition is particularly popular
because it can be considered an extension of the Singular Value
Decomposition (SVD) to higher dimensions [12]. The Tucker
rank-(r1, ..., rd) decomposition of tensor X ∈ Rn1×...×nd is
defined as X ≈ [[G;S1, ...,Sd]] ≜ G×1 S1 ×2 ...×d Sd, where
G ∈ Rr1×...×rd is called the core tensor and Sk ∈ Rnk×rk ,
k ∈ [d] is a set of factor matrices as the rk leading left
singular vectors of the mode-k unfolding of X. Note that
this decomposition is not necessarily unique. More detailed
discussions of tensors can be found in [12].

Tucker decomposition can be achieved via the higher-order
SVD (HOSVD) algorithm [12]. The sequentially truncated
HOSVD (ST-HOSVD) is proposed to improve the computa-
tional efficiency of its predecessor [27]. Unlike the original
algorithm, which treats each dimension independently, ST-
HOSVD finds a factor matrix and immediately compresses the
tensor in the corresponding dimension. The truncated tensor is
then used to find the factor matrix in the next dimension.

Recently, randomized sketching is used to further reduce the
cost of SVD. The key idea is to reduce the dimensions of a
matrix by generating a randomized sketch, which is smaller but
is a good approximation of the original matrix [8]. In particular,
the Rand-Tucker algorithm [34] obtains a sketch Z from the
mode-k unfolding of tensor X and sets the factor matrix Sk

as the orthonormal basis of Z (via QR decomposition). In this
work, we adopt the core idea of Rand-Tucker and modify the
randomized procedure to the federated setting.

The framework that underpins most tensor-based data
analysis tasks is the generalized low-rank tensor estimation
problem [9]. Given a dataset D , this problem is described as

min
X

f
(
X;D

)
s.t. rank

(
X(k)

)
≤ rk, k ∈ [d] (1)

where f
(
X;D

)
is a loss function, and tuple (r1, ..., rd) is the

expected (multilinear) rank of the tensor of interest. In general,
this problem can be solved by the projected gradient descent
method (e.g., [1]) where the gradient descent iterate is projected
onto the feasible set via tensor decomposition such as HOSVD
to satisfy the multilinear rank constraint.

B. Tensor decomposition in FL

Tensor decomposition in the FL framework has previously
been studied [20], [21], [31]. A key aspect in the integration
of tensor decomposition in FL is how the server aggregates
the factorized components. Mainly, there are two aggregation
schemes: the server either reconstructs the full weights before
taking the average [4], [13], [16], or adapts FedAVG and
directly averages the components [22], [32], [33]. A drawback
of the former scheme is the significant increase in compu-
tational efforts. The latter combines latent spaces that are
independently calculated from separate datasets and can suffer
from compounding errors. As noted in [29], a potential remedy
is joint factorization, whereby these tensors are decomposed
into a shared latent factor space. Indeed, joint factorization is
a popular approach in data fusion [19], [36] as it provides a
systemic framework for merging data obtained from different
sources. However, it is still underutilized as an aggregation
scheme in FL. In this work, we benchmark against the current
aggregation schemes and address their shortcomings using joint
factorization.

Mathematically, given N tensors Xi ∈ Rn1×...×nd , let their
concatenation be denoted by the tensor X such that X =[
X1 | X2 | ... | XN

]
and X ∈ Rn1×...×nd×N . The joint

factorization of N tensors Xi is equivalent to finding the
factor matrices of the concatenated tensor X in the first d
dimensions. Gao et al. [7] propose the first joint factorization-
based scheme for the federated feature extraction task. The
authors leverage the result in Lemma II.1 to approximate the
left singular vectors of the mode-k unfolding X(k) as those
of Y =

[
S1
kG

1
(k) ... SN

k GN
(k)

]
, which effectively bypasses the

reconstruction of full-size tensors.

Lemma II.1. (From Gao et al. [7]). For i = 1, ..., N and
k = 1, ..., d, let Gi ∈ Rr1×...×rd and Si

k ∈ Rnk×rk such that
the columns of Si

k are orthogonal. Let Xi = [[Gi;Si
1, ...,S

i
d]],

W =
[
X1

(k) ... XN
(k)

]
and Y =

[
S1
kG

1
(k) ... SN

k GN
(k)

]
. Then

W and Y have the same set of singular values and if U and
Ū are the left singular matrix of W and Y respectively, then
U = ŪP where P is a unitary block diagonal matrix.

Similarly to [7], we exploit the orthogonality of the factor
matrices in the aggregation process and extend it by incorporat-
ing randomized sketching to improve computational efficiency.
Note that [7] focuses on feature extraction while we focus on
a multimodal inverse problem, which requires new concepts,
ideas, and tricks.



C. Federated tomographic reconstruction

In this paper, we extend the multimodal image reconstruction
problem in [2], which is given by

min
X1,...,XN

N∑
i=1

f
(
Xi;D i

)
s.t. XN =

N−1∑
j

cjX
j
j (2)

where XN denotes the client with X-ray transmission (XRT)
data and Xj , j ∈ [N − 1] are clients with X-ray fluorescence
(XRF) data. The coefficient cj denotes the mass attenuation
coefficient of the element of interest and is well characterized.

FIRM, the approach developed in [2], enables clients with
data obtained from different modalities to collaborate and
improve their respective solution quality with convergence
guarantee [2]. Specifically, at epoch t, clients use gradient
descent to locally update the previous solution Xi(t− 1) and
obtain X̃

i
, i ∈ [N ]. After receiving the full-size tensors X̃

i
,

the server performs a series of arithmetic operations to enforce
the multimodality constraint as follows.

Σ←
N−1∑
i=1

ciX̃
i

Xi(t)← X̃
i
+

ci
2
(X̃

N
− Σ), i ∈ [N − 1]

XN (t)← X̃
N
+Σ

2

(3)

Previous works have shown that the low-rank regularization
via tensor decomposition improves standard tomographic
reconstruction quality [11]. In this paper, we introduce low-
rank regularization and incorporate tensor decomposition to the
FIRM framework to further improve the solution of Problem 2.

III. METHODOLOGY

In this section, we build on the projected gradient descent
approach from [1] and develop a joint factorization scheme for
the server; we also adapt the FIRM update (3) to enforce the
multimodality constraint in the Tucker component space.

A. Algorithm

We consider a constrained low-rank tensor estimation prob-
lem in the federated setting as follows,

min
X1,...,XN

N∑
i

f(Xi;D i
)

s.t. rank
(
Xi

(k)

)
≤ rk k ∈ [d], i ∈ [N ]

Xi = [[Gi;S1, ...,Sd]] i ∈ [N ]

ST
k Sk = Irk k ∈ [d]

GN =

N−1∑
j

cjG
j

(4)

where the core tensors Gi ∈ Rr1×...×rd ∀i ∈ [N ] are client-
specific, the factor matrices Sk ∈ Rnk×rk ∀k ∈ [d] are shared
across local clients, and Irk ∈ Rrk×rk is the identity matrix.

This structure ensures that while clients retain their data locally,
global knowledge can still be learned collaboratively. Note that
the linear constraint in Problem 2 naturally applies to Gi. The
algorithm is provided in Algorithm 1.

At local clients, we use the projected gradient descent
method to optimize the low-rank tensor estimation problem (1),
where ST-HOSVD is used for projection due to its robustness
comparing to HOSVD. With this local update, clients obtain
their independent set of factor matrices and the corresponding
cores. For the global stage on the server, we develop an
aggregation scheme based on joint factorization to combine the
latent spaces across clients while maintaining the orthogonality
condition ST

k Sk = Irk , k ∈ [d]. We also utilize randomized
sketching in the factorization procedure for better computational
efficiency. To enforce the last constraint in (4), we leverage
the FIRM update to aggregate the cores. Our aggregation
scheme avoids reconstructing full-size tensors and facilitates
heterogeneous ranks, compared to other works [4], [16], [22],
[32], [33]. Since both the server and the clients send low-
rank components, our method promotes compression for both
upstream and downstream communication.

Algorithm 1: Federated Low-rank Tensor Estimation
with Joint Factorization

Server Input : Tucker rank (r1, ..., rd), number of
epochs T , learning rate η

Client Input : Dataset D i, i ∈ [N ]
1 Server initializes and broadcasts to clients Gi(0),

i ∈ [N ] and Sk(0), k ∈ [d];
2 for t = 1, ..., T do
3 CLIENT i = 1, ..., N :
4 Xi(t)← Gi(t− 1)×1 S1(t− 1)×2 ...×d Sd(t− 1);

5 X̃
i
← Xi(t)− η∇f(Xi(t);D i);

6 Ĝ
i
, Ŝi

1, ..., Ŝ
i
d ← ST-HOSVD(X̃

i
);

7 Send Ĝ
i
, Ŝi

1, ..., Ŝ
i
d to the Server;

8 SERVER:
9 S1(t), ...,Sd(t)← Joint-Factorization(Ĝ

i
, Ŝi

1, ..., Ŝ
i
d,

i ∈ [N ]);
10 Broadcasts Sk(t), k ∈ [d] to all clients;
11 for i = 1, ..., N do
12 G̃

i
← [[Ĝ

i
;S1(t)

T
Ŝi
1, ...,Sd(t)

T
Ŝi
d]];

13 end
14 Σ←

∑N−1
i=1 ciG̃

i
;

15 Gi(t)← G̃
i
+

ci
2
(G̃

N
− Σ), i ∈ [N − 1];

16 GN (t)← G̃
N
+Σ

2
;

17 Sends Gi(t) to client i;
18 end

Let Gi(t), i ∈ [N ] and Sk(t), k ∈ [d] denote the cores
and factor matrices obtained at the end of epoch t. In lines
4-6 of Algorithm 1, a client i constructs the full tensor Xi(t)
from the core Gi(t− 1) and factor matrices Sk(t− 1), k ∈ [d]



received from the server. The client solves the local low-rank
optimization problem by updating its respective tensor Xi(t)

using gradient descent to obtain X̃
i

and applying ST-HOSVD to
this new tensor. The client then sends the factorized components
Ĝ
i
, Ŝi

1, ..., Ŝ
i
d to the server.

To enforce the first two constraints in (4), the server performs
joint factorization. One option is to directly apply Lemma II.1
from [7] so that the server can perform joint factorization
without full-size tensors (as summarized in Algorithm 2).
However, it involves the SVD calculation of large matrices Yk

Algorithm 2: Joint factorization on the server at epoch
t (Direct application of [7])

Input: Tucker rank (r1, ..., rd)

Input: Ĝ
i
, Ŝi

1, ..., Ŝ
i
d, i ∈ [N ], t

Output: Sk(t), k ∈ [d]
1 for k = 1, ..., d do
2 Yk ←

[
Ŝ1
kĜ

1

(k) ... ŜN
k Ĝ

N

(k)

]
;

3 Sk(t)← rk left singular vectors of Yk;
4 end

of size nk ×NΠd
j ̸=krj , which can be very expensive as the

number of clients and dimensions grow.
Therefore, to further improve efficiency, we consider QR

decomposition-based randomized Tucker decomposition (as
proposed in [34]) and adapt it to the federated setting as follows.

Lemma III.1. Suppose that Xi = [[Gi;Si
1, ...,S

i
d]] where

Si
k
T
Si
k = Irk ∀i ∈ [N ],∀k ∈ [d]. Let Wk =

[
X1

(k) ... XN
(k)

]
.

If Zk = WkΩk for a Gaussian matrix Ωk of size NΠd
j ̸=knj×

rk, then Zk =
∑N

i=1 S
i
kG

i
(k)Ω

i
k for some Ωi

k Gaussian
matrices of size Πd

j ̸=krj × rk.

Proof. We rewrite Ωk =

 Ω̄1
k

...
Ω̄N

k

 where Ω̄i
k ∈ RΠd

j ̸=knj×rk .

We have WkΩk =
∑N

i=1 W
i
(k)Ω̄

i
k. In addition, since Xi =

[[Gi;Si
1, ...,S

i
d]], the mode-k unfolding is Wi

(k) = Si
kG

i
(k)V

i
k
T

where Vi
k = (Si

d ⊗ ... ⊗ Si
k+1 ⊗ Si

k−1 ⊗ ... ⊗ Si
1). Because

Si
k
T
Si
k = Irk , it is easy to show that Vi

k also has orthogonal
columns.

We now have WkΩk =
∑N

i=1 S
i
kG

i
(k)V

i
k
T
Ω̄i

k. Let Ωi
k =

Vi
k
T
Ω̄i

k. Using the property of the Gaussian distribution, it is
readily observed that Ωi

k is also a Gaussian matrix with each
element independently drawn from the normal distribution.

Finally, we propose Algorithm 3 that combines the result in
Lemma III.1 (shown in lines 2-3) and QR decomposition.
Compared to Algorithm 2, we now decompose a smaller
matrix of size nk × rk, which is independent of the number of
clients and dimensions. Note that with randomized factorization,
we essentially sample from the column space of a matrix,
so as rk decreases, the randomized sketch becomes a less
accurate approximation of the original tensor [8]. This in turn

can introduce more errors in subsequent QR decomposition.
Therefore, if we choose small values for the Tucker ranks,
the loss in accuracy due to randomization may outweigh the
gain in computational efficiency. In this case, it is advisable
to use Algorithm 2 instead. We name our method Component
Randomized Joint Factorization (i.e., CompRandJF) with the
use of Algorithm 3 for joint factorization in Algorithm 1.
Alternatively, we term the method using Algorithm 2 for joint
factorization in Algorithm 1 as Component Joint Factorization
(i.e., CompJF).

Algorithm 3: Randomized joint factorization on the
server at epoch t

Input: Tucker rank (r1, ..., rd)

Input: Ĝ
i
, Ŝi

1, ..., Ŝ
i
d, i ∈ [N ], t

Output: Sk(t), k ∈ [d]
1 for k = 1, ..., d do
2 Ωi

k ← i’th i.i.d. sample of a Gaussian matrix of
size Πd

j ̸=krj × rk, i ∈ [N ];

3 Yk ←
∑N

i=1 Ŝ
i
kĜ

i

(k)Ω
i
k;

4 Sk(t)← Q from QR decomposition of Yk;
5 end

To satisfy the last constraint in (4), the server first recomputes
the cores after obtaining the updated factor matrices (see
lines 9–11 of Algorithm 1), then applies the FIRM update
(3), adapted specifically for the cores.

Remark. Heterogeneous ranks can arise when clients have
varying bandwidths or have prior knowledge about the appro-
priate rank of the local data. Our joint factorization scheme
for the server allows heterogeneous ranks, as it does not
require dimensions to match and clients can choose their own
Tucker rank (ri1, ..., r

i
d). Essentially, Algorithms 2 and 3 can

be adjusted to find the r∗k leading left singular vectors where
r∗k = max(r1k, ..., r

N
k ), k ∈ [d].

B. Complexity Analysis

In this section, we discuss the complexity regarding the
communication of our proposed method. Without loss of
generality, we assume that n = n1 = ... = nd and
r = r1 = ... = rd. For a tensor X ∈ Rn1×...×nd , the
communication complexity of transmitting the full-size tensor
is O(nd). On the other hand, communicating the rank-(r, ..., r)
Tucker decomposition reduces the complexity to O(rd + dnr).

A key challenge in utilizing tensor decomposition for
communication compression is the choice of rank r that

maximizes the compression ratio (defined as ϕ =
nd

rd + dnr
)

while maintaining performance. Dai et al. [4] give an upper
bound for the Tucker rank that guarantees a reduction in
communication cost per epoch, specifically r ≤ n

(1 + dn)1/d
.

While this bound provides practical guidance, it is overly
restrictive in the range of r. For example, when n = 250
and d = 2, the bound suggests r ≤ 11. Such aggressive



compression, and consequently regularization on the underlying
structure of the solution, can have a negative impact on the
reconstruction quality.

To address this limitation, it is important to find a broader
range of values for r. Proposition 1 provides less restrictive
bounds for d = 2 and d = 3 that allow clients to choose
a much larger Tucker rank, compared to [4]. For the same
example, the acceptable range of r increases to r ≤ 103.
Proposition 1 further shows that as d and n increase, the
communication overhead savings with Tucker decomposition
increase substantially.

Proposition 1. If n ≥ 3, then the improved upper bound reads
• r <

n√
2 + 1

for d = 2, and

• r < n
(n− 3

n

)1/3
for d = 3.

Furthermore, for both values of d, these bounds are greater
than

n

(1 + dn)1/d
.

Proof. Let β =
r

n
, resulting in ϕ =

1

βd + (dβ)/nd−2
. Note

that 0 < β < 1 since r < n.
For d = 2, ϕ =

1

β2 + 2β
. If β < 1/(

√
2+1), then β2+2β <

1 and ϕ > 1. Since (1 + dn)1/d ≥
√
5 >
√
2 + 1, the bound

n√
2 + 1

>
n

(1 + 2n)1/2
.

For d = 3, ϕ =
1

β3 + 3β/n
. If β <

(n− 3

n

)1/3
, we have

β3 + 3
β

n
<

n− 3

n
+

3

n
= 1 and ϕ > 1. Since 1 + 3n > 1 +

3

n− 3
=

n

n− 3
, the bound n

(n− 3

n

)1/3
>

n

(1 + 3n)1/3
.

We also compare the computational complexity of CompJF
and CompRandJF with the baseline approach, where the server
reconstructs full-size tensors to aggregate before applying tensor
decomposition (termed as FullDecomp). We summarize the
operation counts in Table I.

TABLE I: Computational complexity of the server per epoch

Approach Complexity

FullDecomp O
(
N

∑d
k=1

(
nd−k+1rk+

nd−k+2rk−1 + nd−krk) +Nnd
)

CompJF (Alg. 1 & 2) O
(
Nd

(
nrd + n2rd−1

)
+N

(
dnr2 + drd+1

)
+Nrd

)
CompRandJF (Alg. 1 & 3) O

(
Nd

(
rd + rd+1 + nr2 + nr

)
+ dnr2

+N
(
dnr2 + drd+1

)
+Nrd

)
IV. EXPERIMENTS AND RESULTS

We evaluate the performance of CompJF and CompRandJF
using synthetic data. To show the benefits of our aggregation
schemes, we benchmark them against FIRM and FullDecomp,
where the server reconstructs full-size tensors to aggregate
before applying tensor decomposition for downstream com-
munication. We also experiment with the naive extension of
FedAVG in which factor matrices are averaged across clients
but this aggregation scheme does not yield meaningful training.

In addition, we demonstrate the communication efficiency
achieved by CompJF and CompRandJF. For benchmarking, we
apply to FIRM the compressed sparse row (CSR) encoding and
Top-k sparsification. Top-k is a magnitude-based sparsification
method and has been shown to effectively reduce communi-
cation overhead [17], [23]. For Top-k sparsification, we first
sort all the values in an array and only keep the the top k%
of the values; the remaining values are set to zero. Note that
Top-k sparsification produces sparse arrays and can further
benefit from sparse encoding. Thus, the two benchmarks for
communication efficiency are FIRM with only CSR encoding
and FIRM with a combination of Top-k and CSR encoding.
We refer to the second benchmark as Top-k for short.

Finally, we highlight the ability of our methods to facilitate
heterogeneous ranks in which clients determine their own
Tucker decomposition ranks.

A. Experimental settings

Tomographic data, or sinograms, are generated from scanning
an object using an energy source with θ angles and τ discretized
beamlets for each angle. Let the tensor A ∈ Rθ×τ×n1×n2

represent the discrete Radon transform and Aθ,τ,i,j is the
intersection length of the angle-beamlet pair (α, β) with the
pixel (i, j). Let the tensor to be reconstructed and the observed
measurements of each client i be denoted by Xi ∈ Rn1×...×nd

and Bi ∈ Rθ×τ×n3...×nd . The loss function in our tensor
estimation problem becomes f =

∑N
i=1

∣∣∣∣A ⊠ Xi − Bi
∣∣∣∣2
F

where N is the total number of local clients and ⊠ denotes
the contracted tensor product of two tensors.

We evaluate the proposed method on synthetic data, which
are generated with parallel geometry and are variants of
the Shepp-Logan phantom, a standard image for testing in
computed tomography [6]. Following the setting in [2], we
experiment with N = 4 clients, one holding data obtained
from the XRT modality and the other with data produced by
the XRF modality. The ground truth Xi to be reconstructed
is of size 250 × 250, and the Radon transform has τ = 354
beamlets and θ = 100 angles. Note that with this number of
angles, the measurements are undersampled and the inverse
problem is ill-posed.

We experiment with adding speckle noise, which is in-
herent in the imaging process, to the sinograms, such that
output = true signal + ϵ ∗ true signal and ϵ is normally
distributed. We vary the standard deviation of the added noise
as σ ∈ {0.01, 0.05, 0.1}.

For CompJF, CompRandJF and FullDecomp, we use Propo-
sition 1 to obtain the upper bound of the decomposition
rank r given that n = 250. The results are obtained with
r ∈ {10, 20, 40, 60, 80, 100}. In the heterogeneous rank setting,
each client randomly samples a value of r in the range of
[20, 100]. There are two possible scenarios of heterogeneous
ranks. Clients a) have prior knowledge of the appropriate
rank or fixed communication limit, or b) have unstable
communication bandwidths, so the Tucker ranks need adjusting
each communication round. Consequently, in our experiments,
the Tucker ranks can be a) sampled before the federated



Fig. 1: Evaluating the performance of various methods given the strongest noise level (σ = 0.1). For CompJF, CompRandJF and FullDecomp, we present
the results for Tucker rank r = 100, the largest value that guarantee communication compression. The results for other ranks r ≥ 40 is similar.

reconstruction starts or b) resampled every epoch prior to
upstream communication.

B. Performance metrics

1) Reconstruction quality: We compare the solutions to
the ground-truth images by evaluating two metrics as the
Peak Signal-to-Noise Ratio (PSNR) and the multiscale Struc-
tural Similarity Index Measure (SSIM). PSNR is inversely
proportional to the mean squared error (MSE) and SSIM
computes similarities in structural information and incorporates
interdependencies among pixels. SSIM is bounded between −1
and 1 and when SSIM = 0, there is no similarity between
two images. For both quantities, higher values indicate better
reconstruction.

2) Communication efficiency: We are interested in measur-
ing the trade-off between reconstruction quality and communi-
cation cost. Song et al. [25] propose Gamma Communication

Efficiency GCE =
Accuracy

(1− Accuracy)γ
∑T

t=1 log2(Vt + 1)
in

which T denotes the number of communication rounds and Vt

is the communication volume, measured in bits. The parameter
γ controls the importance of test accuracy in relation to
communication, and the two quantities are near proportional
if γ → 0. A higher value of GCE indicates a better balance
between communication and accuracy, which is more desirable.
We consider image quality and communication compression
to be of equal importance and use γ = 0.01, as in [25], to
analyze our results. We also adapt the metrics to images by
replacing the test accuracy with SSIM as the SSIM values in
our experiments fall in the range [0, 1]. To calculate Vt, we
combine upstream and downstream communication.

C. Results

1) Robustness against noisy data: We demonstrate in Fig.
1 that CompJF and CompRandJF produce better reconstruction
than other approaches in the presence of noise. To understand
the effect of noise, we plot the results for the strongest noise
level (σ = 0.1) and use the largest Tucker rank that guarantee
communication compression (r = 100).

Overfitting to noise, combined with the ill-posed nature of the
inverse problem, often leads to a degradation of image quality
as the optimization progresses. This is evident in Fig. 1 as both
PSNR and SSIM peak before 100 epochs and then decrease
over time, while the loss remains non-increasing. However,
the low-rank decomposition coupled with joint factorization
(as enforced in CompJF and CompRandJF) can mitigate this

effect, and result in a more graceful degradation. This behavior
aligns with results from previous works in which low-rank
regularization helps constrain the solution space of the inverse
problem, suppressing noise and artifacts in the subsequent
reconstructed images. This also explains why the other three
methods lead to better quality metrics compared to FIRM
despite having worse loss function.

We also show the ground truth and the reconstructed images
from various methods in Fig. 2. The quality of the images
aligns with the numerical results in Fig. 1. It is visible that
CompJF and CompRandJF have additional denoising effect on
the reconstructed images compared to FIRM.

Fig. 2: Ground-truth and reconstructed images from various methods for
client N with XRT imaging modality. The images are reconstructed from
noisy data (σ = 0.1). For FullDecomp, CompJF, and CompRandJF, we use
Tucker rank r = 100. The reconstructed images correspond to the highest
SSIM values.

2) Stable performance across Tucker ranks: In addition
to better reconstruction, CompJF and CompRandJF are able
to maintain good performance as we decrease the Tucker rank
and further compress the data. We present the best result for
each rank value as well as the result induced by early stopping
in Fig. 3. A common solution to overfitting in tomographic
reconstruction is to apply the discrepancy principle, which
is an early stopping rule and is widely used in the literature.
We use the formulation of the discrepancy principle as in [2]
so that the optimization stops when the condition f i(t) ≤
max

(
Bi

)√
θτσ is satisfied for every client, where Bi are the

observed measurements, θ is the number of projection angles,
τ is the number of beamlets and σ is the standard deviation
of added noise.



We observe that our proposed approaches produce better
results than FIRM for Tucker ranks r ≥ 40, especially as the
data become more noisy. This performance holds when early
stopping is incorporated. For r < 40, CompJF exhibits a more
gradual decrease in performance compared to CompRandJF.
This is due to the randomized sketch used in CompRandJF. As r
further decreases, this sketch is no longer a good approximation
of the original matrix and leads to loss of information in the
factorization process.

(a) Best result overall

(b) Result with early stop

Fig. 3: Performance of CompJF and CompRandJF for varying Tucker
decomposition ranks and varying level of noise. (a) Includes the highest SSIM
value, averaged across clients, obtained by the approaches. (b) Includes the
average SSIM obtained when the discrepancy principle is satisfied. With early
stopping condition, all three approaches terminate at the same epoch.

3) Communication compression: We next illustrate the
superior ability to balance reconstruction quality and com-
munication compression of our methods, compared to Top-k
sparsification and CSR encoding. With Top-k sparsification,
the parameter k controls the percentage of compression in each
communication round, and we vary k ∈ {10, 30, 50, 70, 90}.
For easier comparison, we convert the chosen Tucker ranks
to the corresponding percentage of compression. For example,
given that n = 250, if r = 40, we have a 34.56% compression.

(a) % Gain in GCE by CompJF, CompRandJF and FIRM with Top-k over
FIRM with CSR encoding.

(b) Plot of average SSIM and the total communication volume in Mb to
achieve such SSIM.

Fig. 4: Performance of our methods, CompJF and CompRandJF, Top-k
and CSR encoding in balancing reconstruction quality with communication
compression. a) GCE is computed using the SSIM values when the early
stopping is satisfied and is averaged across clients. b) For CompJF and
CompRandJF, the Tucker rank is r = 40 and for Top-k, we use k = 30. With
this choice of hyperparameters, our methods and Top-k have close percentage
of compression in each communication round (30% and 34%).

Fig. 4a shows the percentage gain in GCE with respect to

the CSR encoding and 4b highlights the total communication
volume needed to achieve high quality reconstruction. The
results in Fig. 4 indicate that CompJF and CompRandJF
lead to a substantial gain in GCE compared to full-size
communication enhanced with CSR encoding and surpass
Top-k. When r = 10, the drop in SSIM overshadows the
improvement in communication, thus the sharp decline in GCE.

4) Heterogeneous ranks: Finally, we demonstrate the
ability of CompRandJF, as well as CompJF, to adapt to
heterogeneous ranks. This property is an improvement over
other aggregation schemes that rely purely on averaging and
require matching dimensions. In Fig. 5, we use FullDecomp,
adjusted for heterogeneous ranks, and FIRM as baselines for
comparison. We observe that the performance of Comp JF
and CompRandJF is consistent with the homogeneous case
regarding reconstruction quality.

(a) Clients sample personalized
ranks at the start.

(b) Clients sample ranks before
every communication round.

Fig. 5: Performance of FullDecomp, CompJF and CompRandJF in hetero-
geneous rank setting for noisy data (σ = 0.1). We conduct 10 independent
simulations and plot the mean with one standard deviation.

V. CONCLUSION

In this paper, we present a federated image reconstruction
method that leverages Tucker decomposition in conjunction
with joint factorization and randomized sketching for efficient
aggregation. We compare our approach against two benchmarks:
1) FIRM which addresses federated reconstruction without
low-rank regularization and transmits high-dimensional data
for each update, and 2) FullDecomp which is a common
aggregation technique in tensor decomposition for federated
learning that reconstructs the full weights for aggregation
and optionally re-decomposes them to reduce downstream
communication. Our method demonstrates superior reconstruc-
tion quality and more graceful performance degradation under
noisy and undersampled conditions. In addition, we achieve
better compression than magnitude-based sparsification (Top-
k) and compressed sparse row encoding. By supporting both
homogeneous and heterogeneous ranks, our approach delivers
high-quality reconstruction across diverse scenarios. For future
work, we plan to conduct convergence analyses, explore higher-
dimensional datasets, and further investigate heterogeneous
ranks—particularly relevant given that true data ranks are often
unknown in practice, making randomized rank selection a
valuable research avenue.
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APPENDIX A
RESULTS FOR COMPAVG

We present the results of CompAVG, the naive extension of
FedAVG in which factor matrices are averaged across clients.
Evidently in Fig. 6, CompAVG does not yield meaningful

Fig. 6: Evaluating the performance of various methods given noisy data
(σ = 0.1). For CompJF, CompRandJF and FullDecomp, Tucker rank is
r = 100.

training compared to other methods. This is likely because the
factor matrices are obtained via tensor decomposition after the
full-size tensor update by gradient descent, unlike the weights
in FedAVG which are directly optimized.
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