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Abstract

We propose a new, training-free method,
Graph Reasoning via Retrieval Augmented
Framework (GRRAF), that harnesses
retrieval-augmented generation (RAG) along-
side the code-generation capabilities of large
language models (LLMs) to address a wide
range of graph reasoning tasks. In GRRAF,
the target graph is stored in a graph database,
and the LLM is prompted to generate exe-
cutable code queries that retrieve the necessary
information. This approach circumvents the
limitations of existing methods that require
extensive finetuning or depend on predefined
algorithms, and it incorporates an error
feedback loop with a time-out mechanism to
ensure both correctness and efficiency. Ex-
perimental evaluations on the GraphInstruct
dataset reveal that GRRAF achieves 100%
accuracy on most graph reasoning tasks,
including cycle detection, bipartite graph
checks, shortest path computation, and maxi-
mum flow, while maintaining consistent token
costs regardless of graph sizes. Imperfect but
still very high performance is observed on
subgraph matching. Notably, GRRAF scales
effectively to large graphs with up to 10,000
nodes.

1 Introduction

Graph reasoning plays a pivotal role in model-
ing and understanding complex systems across nu-
merous domains (Wu et al., 2020). Graphs natu-
rally represent entities and their interrelations in
areas such as social networks, transportation sys-
tems, biological networks, and communication in-
frastructures. Graph reasoning tasks like deter-
mining connectivity, detecting cycles, and finding
the shortest path are not only central to theoreti-
cal computer science but also have practical im-
plications in network optimization, anomaly de-
tection, decision support systems, etc (Scarselli
et al., 2008). However, addressing these tasks
requires a deep understanding of graph topology

Figure 1: A schematic representation of the GRRAF
concept. When a user asks a graph reasoning ques-
tion, the LLM generates code to query the target graph
stored in a graph database, retrieves the answer, and
presents it as the response. An error feedback loop is
integrated into GRRAF to prompt the LLM to refine
the code whenever execution or time-out errors occur.

combined with precise computational procedures,
underscoring the critical challenge of developing
efficient graph reasoning methods in contempo-
rary machine learning research (Zhao et al., 2024).

Large language models (LLMs) have demon-
strated an impressive capacity for multi-step rea-
soning, which enables them to interpret com-
plex graph-related questions expressed in nat-
ural language and generate human-readable re-
sponses (Guo et al., 2023). Several recent stud-
ies have leveraged LLMs to tackle graph rea-
soning problems by converting graph structures
into textual representations or latent embeddings
through graph neural networks (GNNs), thereby
exploiting the powerful natural language reason-
ing capabilities of LLMs (Perozzi et al., 2024;
Guo et al., 2023; Zhang, 2023; Wang et al., 2024a;
Fatemi et al., 2024; Skianis et al., 2024; Lin et al.,
2024). However, even when advanced prompt-
ing techniques are employed, these methods tend
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to perform poorly on fundamental graph reason-
ing tasks, such as evaluating connectivity or iden-
tifying the shortest path, with average accuracies
ranging from 20% to 60%. Alternative approaches
that achieve higher accuracy typically either re-
quire extensive finetuning—which results in poor
performance on out-of-domain questions (Chen
et al., 2024; Zhang, 2023)—or rely on predefined
algorithms as input, thereby limiting their ability
to address unseen tasks (Hu et al., 2024).

To address these limitations, we introduce a
training-free and zero-shot method, the Graph
Reasoning via Retrieval Augmented Framework
(GRRAF), that leverages retrieval-augmented
generation (RAG) (Lewis et al., 2020) alongside
the code-writing capabilities of large language
models. In GRRAF, the target graph is stored in a
graph database, and the LLM is prompted to gen-
erate appropriate queries, written as code, that ex-
tract the desired answer by retrieving relevant in-
formation from the database. This strategy har-
nesses the LLM’s robust reasoning ability and its
proficiency in generating executable code, thereby
achieving high accuracy on a range of graph rea-
soning tasks without requiring additional finetun-
ing or predefined algorithms. In addition, we in-
corporate an error feedback loop combined with a
time-out mechanism to ensure that the LLM pro-
duces correct queries in a time-efficient manner.
Furthermore, since accurate code reliably yields
the correct answer regardless of the graph’s size,
GRRAF can easily scale for polynomial problems
to accommodate larger graphs without a drop in
accuracy. In GRRAF, we use Neo4j, an interactive
graph database, and NetworkX, a Python library
for graphs. GRRAF accepts the target graph as
either plain text or data already stored in Neo4j,
specified in the prompt by the graph file name. In
the former case, the prompt must specify if Neo4j
or NetworkX is to be used. The LLM then must ei-
ther create code to insert the graph specified in the
prompt to Neo4j or to a NetworkX graph object.

GRRAF offers a fully automated, end-to-end
framework for handling graph-reasoning problems
written entirely in text. By leveraging the world
knowledge encoded in LLMs, it generates cor-
rect code and returns accurate answers automat-
ically for a wide range of graph-reasoning tasks
expressed as natural-language questions. In addi-
tion, GRRAF establishes a foundation for future
work on real-world structured relational-inference
problems—ranging from knowledge-graph com-

pletion to molecular analysis—that are naturally
represented as graph-structured data. An LLM
user could potentially accomplish the same by di-
rectly prompting the LLM to create Python or
Neo4j queries for the task on hand. Our approach
offers the benefits of graph reading and loading,
the execution of the code with the error-feedback
loop, and the fallback approach.

Experimental results demonstrate that GRRAF
achieves 100% accuracy on many graph reasoning
tasks, outperforming state-of-the-art benchmarks.
Moreover, GRRAF is applicable to large graphs
containing up to 10,000 nodes, maintaining 100%
accuracy with no increase in token cost. Although
GRRAF only achieves 86.5% accuracy on sub-
graph matching, it still outperforms other state-of-
the-art methods. Our contributions are listed be-
low.

• Novel Graph Reasoning Approach: This
work introduces a new method that leverages
RAG to address graph reasoning tasks, such
as connectivity analyses, cycle detection, and
shortest path computations. It represents the
first application of RAG in the domain of
graph reasoning.

• Error Feedback Loop Innovation: The
paper introduces the integration of a time
out mechanism within an error feedback
loop, along with the dynamic refreshing of a
prompt to guide the LLM to produce more
efficient code. This mechanism enhances
robustness and efficiency of the generated
query by preventing an infinite loop.

• Scalable State-of-the-Art Performance:
The proposed method achieves state-of-the-
art accuracy and demonstrates exceptional
scalability, being the first to handle large
graphs effectively without significant degra-
dation in accuracy or substantial cost in-
creases.

All implementations and datasets are
available in https://github.com/
hanklee97121/GRRAF/tree/main.

2 Related Works

2.1 Graph RAG
There exist numerous prior works that employ
graph data within RAG frameworks to enhance the
capabilities of LLMs, a paradigm often referred
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Figure 2: GRRAF workflow. The retrieval component represents the interaction with the graph database through
code, while the generation component involves prompting an LLM to produce the output.

to as GraphRAG (Peng et al., 2024). These ap-
proaches retrieve graph elements containing rela-
tional knowledge relevant to a given query from a
pre-constructed graph database (Edge et al., 2024).
Several studies have contributed to the develop-
ment of open-source knowledge graph datasets for
GraphRAG (Auer et al., 2007; Suchanek et al.,
2007; Vrandečić and Krötzsch, 2014; Sap et al.,
2019; Liu and Singh, 2004; Bollacker et al., 2008).
Building on these datasets, many methods opt to
convert graphs to other easily retrievable forms,
such as text (Li et al., 2023; Huang et al., 2023;
Yu et al., 2023; Edge et al., 2024; Dehghan et al.,
2024) or vectors (He et al., 2024; Sarmah et al.,
2024), to improve the efficiency of query oper-
ations on graph databases. To further enhance
the quality of retrieved data, several approaches
optimize the retrieval process within GraphRAG
by refining the retriever component (Delile et al.,
2024; Zhang et al., 2022a; Kim et al., 2023; Wold
et al., 2023; Jiang et al., 2023; Mavromatis and
Karypis, 2024), optimizing the retrieval paradigm
(Wang et al., 2024b; Sun et al., 2024c; Lin et al.,
2019), and editing a user query or the retrieved
information (Jin et al., 2024; LUO et al., 2024;
Ma et al., 2025; Sun et al., 2024a; Taunk et al.,
2023; Yasunaga et al., 2021). Furthermore, many
methods enhance the answer generation process of
GraphRAG to ensure that the LLM fully utilizes
the retrieved graph data to generate the correct an-
swer (Dong et al., 2023; Mavromatis and Karypis,
2022; Jiang et al., 2024; Sun et al., 2024b; Zhang
et al., 2022b; Zhu et al., 2024; Wen et al., 2024;
Shu et al., 2022; Baek et al., 2023). However,
these methods focus exclusively on knowledge

graphs and cannot be directly applied to solve
graph reasoning questions. In contrast, GRRAF
is the first method to employ RAG for addressing
graph reasoning questions on pure graphs.

2.2 Graph Reasoning

Recent work has explored the use of LLMs to ad-
dress graph reasoning problems. Several meth-
ods rely solely on prompt engineering techniques
to enhance LLM reasoning capabilities on graphs
(Liu and Wu, 2023; Guo et al., 2023; Wang et al.,
2024a; Zhang et al., 2024; Fatemi et al., 2024;
Wu et al., 2024; Tang et al., 2025; Skianis et al.,
2024; Lin et al., 2024). Building on them, Per-
ozzi et al. (2024) integrate a trained graph neural
network (Scarselli et al., 2008) with an LLM to
improve its performance on graph reasoning tasks
by encoding each graph into a token provided as
input to the LLM. Meanwhile, Zhang (2023) and
Chen et al. (2024) finetune an LLM with instruc-
tions tailored to graph reasoning tasks to boost per-
formance. In another approach, Hu et al. (2024)
propose a multi-agent solution for graph reason-
ing problems by assigning an LLM agent to each
node and enabling communication among agents
based on a predefined algorithm. In contrast, GR-
RAF employs RAG to address graph reasoning
problems without extensive prompt engineering.
This approach is training-free and thus unsuper-
vised and does not depend on any predefined al-
gorithm. Furthermore, unlike previous methods,
the LLM in GRRAF does not receive the entire
graph as input; consequently, the token usage re-
mains independent of graph size, thereby enabling
efficient scalability to very large graphs.



Figure 3: An illustrative example demonstrating the ap-
plication of GRRAF to solve a shortest path question
by using NetworkX. Graph G in text is stored as an
NetworkX object by code.

Task Node Size # of
Test
Graphs

Cycle Detection [2, 100] 400
Connectivity [2, 100] 400
Bipartite Graph Check [2, 100] 400
Topological Sort [2, 50] 400
Shortest Path [2, 100] 400
Maximum Triangle Sum [2, 25] 400
Maximum Flow [2, 50] 400
Subgraph Matching [2, 30] 400
Indegree Calculation [2, 50] 400
Outdegree Calculation [2, 50] 400

Table 1: The detailed information of GraphInstruct
dataset and two additional tasks (indegree calculation
and outdegree calculation). The subgraph matching
task is to verify if there exists a subgraph in G that is
isomorphic to a given graph G′.

3 Method

In this section, we explain how GRRAF integrates
RAG to address graph reasoning questions and re-
trieve accurate answers. The entire workflow of
GRRAF is demonstrated in Figure 2. A graph rea-
soning question, denoted as Q, consists of two
components: a graph G and a user prompt P .
The graph G represents the target graph associ-
ated with Q and is stored either in Neo4j or as a
NetworkX graph object (code written by an LLM
and executed by an agent). The prompt P con-
tains a graph-specific question regarding G (e.g.,
“Does node 2 connect to node 5?” or “What is
the shortest path from node 5 to node 8?”). To

enhance code generation by the language model,
we initially input P into the LLM, requesting it
to refine the prompt, clarify the format, and elim-
inate redundant information. The resulting re-
fined prompt is denoted as P ′. Then, the LLM
is prompted to generate a generic code template
C that addresses P ′ without incorporating graph-
specific details. For example, if P ′ states “Find the
shortest path from node 3 to node 5,” the template
C encapsulates a generic shortest path algorithm
that does not include the specific node identifiers.
Additionally, we extract the schema S (compris-
ing of node properties and edge properties) from
the graph database using a hard-coded procedure.
This schema ensures that the LLM-generated code
utilizes correct variable names.

Subsequently, we provide P ′, C, and S to the
LLM and instruct it to generate the final code C ′

that produces an answer A corresponding to P ′.
An error feedback loop is incorporated into this
process. If an error arises during the execution of
C ′, the error message, along with C ′, is supplied
back to the LLM, prompting it to produce a revised
version of the code. To promote the generation of
time-efficient code, given that multiple algorithms
with varying time complexities may be applica-
ble, we integrate a time-out mechanism within the
error feedback loop. Specifically, a time limit t
is imposed on the execution of C ′. If the execu-
tion time exceeds t, the process is halted, and the
LLM is asked to modify C ′ so that it runs faster.
If the feedback loop iterates more than n times,
the system reverts to using the original question Q
as a prompt to directly obtain the answer A from
the LLM. This forced exit is designed to prevent
perpetual iterations when addressing computation-
ally intractable NP-hard problems (e.g., substruc-
ture matching on large graphs), where no modifi-
cation of C ′ can reduce the execution time below
the threshold t.

In the final step, the answer A is provided to
the LLM to generate a reader-friendly natural lan-
guage response A0 that addresses the graph rea-
soning question Q. An example of solving a graph
reasoning question with GRRAF is demonstrated
in Figure 3.

4 Computational Assessment

4.1 Dataset and Benchmark

We conduct experiments on GraphInstruct (Chen
et al., 2024), a dataset that comprises of nine



Figure 4: Performance of GRRAF and benchmark models across all ten graph reasoning tasks. Missing data are
indicated as “NA” in the plot. The available-case mean refers to the average accuracy of each method calculated
using only the tasks where complete data is available (excluding maximum flow, subgraph matching, indegree
calculation, and outdegree calculation). The all-case mean refers to the average accuracy across all tasks, treating
’NA’ as 0.

graph reasoning tasks with varying complexities.
Due to its diversity in graph reasoning tasks and
its prior use in evaluating state-of-the-art meth-
ods (Chen et al., 2024; Hu et al., 2024), we select
this dataset for our evaluation. However, the task
of finding a Hamilton path lacks publicly avail-
able ground truth labels and generating such labels
through code is infeasible due to the NP-hard na-
ture of the problem; consequently, we exclude this
task from our experiments. Accordingly, we as-
sess the performance of GRRAF on the following
eight tasks: cycle detection, connectivity, bipartite
graph check, topological sort, shortest path, max-
imum triangle sum, maximum flow, and subgraph
matching. Details of these tasks are provided in
Table 1. Moreover, to achieve a more robust per-
formance evaluation, we augment the test dataset
with two additional simple tasks—indegree calcu-
lation and outdegree calculation (as shown in Ta-
ble 1)—to facilitate a comprehensive evaluation
of GRRAF and the state-of-the-art benchmarks.
Each task has 400 question–graph pairs, each with
a single correct answer. We measure a method’s
performance on one task by its accuracy—that is,
the proportion of questions answered correctly out
of the total (400).

GRRAF, i.e., its LLM, generates code which
is either correct or not. This is the reason why
most accuracies are going to be 100%. For tasks
with less than 100% accuracy, GRRAF yields cor-
rect code but the underlying problems are NP-hard
and for some test graphs the execution times out.

One can argue that the output code is correct and
thus appropriate credit should be given, but on the
other hand, a more efficient algorithm and code
can be potentially produced. Sometimes the gen-
erated code does not handle edge cases correctly,
yet other times the code or algorithms are incorrect
(they solve only some test graphs by coincidence).

We compare the performance of GRRAF
against two state-of-the-art benchmarks: Graph-
Wiz (Chen et al., 2024) and GAR (Hu et al.,
2024). GraphWiz is trained on 17,158 ques-
tions and 72,785 answers, complete with reason-
ing paths, from the training set of GraphInstruct.
Since no single version of GraphWiz consistently
outperforms the others across all tasks, we in-
clude three versions in our comparisons: Graph-
Wiz (Mistral-7B), GraphWiz-DPO (LLaMA 2-
7B), and GraphWiz-DPO (LLaMA 2-13B). GAR
is a training-free multi-agent framework that relies
on a predefined library of distributed algorithms
created by humans. As a result, it is incapable
of solving unseen graph reasoning tasks that re-
quire algorithms not present in its library. There-
fore, some results from GAR are missing in the
subsequent comparisons because of its limitation.

4.2 Experiments

We conduct experiments using GRRAF with a
time limit of t = 5 minutes and a maximum error
feedback loop iteration of n = 3. The backbone
LLM is GPT-4o. These parameter choices are jus-
tified by the sensitivity analysis in Appendix A.



For the graph querying code, we evaluate two ap-
proaches: Cypher, a query language for Neo4j,
and NetworkX, a Python library for graphs, which
we denote as GRRAFC and GRRAFN , respec-
tively. We deal with graph plain text, and thus can
be converted into either Neo4j data or NetworkX
objects.

Figure 4 demonstrates that GARRFN outper-
forms all benchmark methods, achieving 100% ac-
curacy on most graph reasoning tasks. GARRFC

exhibits comparable or superior performance rela-
tive to other benchmarks on the majority of tasks,
except for topological sort and subgraph match-
ing. Although GraphWiz outperforms GARRFC

in topological sort and subgraph matching, its in-
adequate performance on indegree calculation and
outdegree calculation suggests that it struggles
with even simple out-of-domain graph reasoning
tasks. Furthermore, due to its inherent limitations,
GAR is inapplicable to out-of-domain tasks such
as maximum flow, subgraph matching, indegree
calculation, and outdegree calculation. Conse-
quently, considering both performance and gener-
alization ability, GARRFC and GARRFN are bet-
ter for addressing graph reasoning tasks than the
other benchmark models. The example code gen-
erated by GARRFN for each graph reasoning task
is presented in Appendix B.

Subgraph matching is NP-complete, and the
code produced by GARRFN has exponential time
complexity. For graphs of 20 nodes, executing
that code can take over a day—exceeding the
time limit t. Based on Section 3, in such cases
GARRDN falls back to using the original ques-
tion Q as a prompt to obtain the answer A directly
from the LLM, which may yield incorrect results.
GRRAFC likewise falls short of 100% accuracy
on cycle detection and bipartite-graph checking,
since Cypher queries execute more slowly than
NetworkX. For the maximum-flow task, GRRAFC

produces code that overlooks certain edge cases.
And for topological sorting and subgraph match-
ing, it generates code that only succeeds on some
graphs by chance.

Across the ten tasks, solving a single graph rea-
soning question requires GRRAFN to use an av-
erage of 767 input tokens and 124 output tokens,
while GRRAFC uses 796 input tokens and 201
output tokens. In comparison, GraphWiz (Mistral-
7B) consumes an average of 1,046 input tokens
and 126 output tokens per question, whereas
GraphWiz-DPO (LLaMA 2-7B) requires 1,046 in-

Figure 5: Accuracy of each method on the shortest
path task across graphs of differenct sizes (number of
nodes).

put tokens and 290 output tokens on average, and
GraphWiz-DPO (LLaMA 2-13B) uses 1,046 in-
put tokens and 301 output tokens per question.
Notably, GAR demands more resources, averag-
ing 8,095 input tokens and 5,987 output tokens
for each graph reasoning question. Thus, compar-
ing to other benchmark methods, GRRAFN and
GRRAFC achieve high accuracy in graph reason-
ing tasks while utilizing fewer token resources.

Since the largest graph in GraphInstruct (Chen
et al., 2024) comprises of only 100 nodes, which
remains insufficient for real-world graph reason-
ing scenarios (Hu et al., 2024), we further eval-
uate the best-performing method, GRRAFN , on
large-scale graphs. Following the approach of Hu
et al. (2024), we assess GRRAFN on the shortest
path task using larger graphs with 20 test samples
for each graph size. Whereas their work scales
graphs to 1,000 nodes, we extend this evaluation
by scaling graphs to 10,000 nodes to thoroughly
assess the performance of GRRAFN . According
to Figure 5, GRRAFN achieves 100% accuracy
across all graph sizes, demonstrating its excep-
tional scalability. GAR attains 100% accuracy on
graphs with 100, 200, and 500 nodes, but its accu-
racy decreases to 90% on graphs with 1,000 nodes.
Due to token limitations, GAR is unable to address
questions on graphs with 2,000 nodes or more. In
contrast, all three versions of GraphWiz perform
poorly on large graphs, achieving only 5-10% ac-
curacy on graphs with 100 nodes and failing en-
tirely on graphs with 200 nodes. The token limits
of their base model prevent them from processing
graphs larger than 200 nodes.

We also record the variation in token cost re-
quired to solve a single graph reasoning question
as the graph size increases on the shortest path
task. As illustrated in Figure 6, the number of to-
kens used by GRRAFN remains constant regard-



Figure 6: Average token cost for solving a graph rea-
soning problem across graphs of varying sizes on the
shortest path task.

Method Execution Error Time-out

GRRAFN 2.2% 5.4%
GRRAFC 4.9% 9.1%

Table 2: Percentage of graph reasoning questions over
10 tasks triggering error feedback loop due to execution
errors or time-outs for each method.

less of the graph size. As detailed in Section 3,
GRRAF interacts with the graph solely via the
graph database through code execution; thus, the
graph description (nodes, edges, weights) is not
directly input to the LLM, and the token cost re-
mains unaffected by increases in graph size. In
contrast, the token cost for GraphWiz increases
linearly with graph size because it must pass the
information of each node and edge to the LLM.
The token cost for GAR is considerably higher
than that for GRRAFN and grows nearly exponen-
tially with graph size. This is due to GAR’s de-
sign, where each node is assigned an LLM agent,
and each agent communicates with every adjacent
agent in each iteration (Hu et al., 2024). As the
number of nodes increases, so do the number of
agents, the number of adjacent agents per node
(i.e., edges), and the number of iterations required
to obtain an answer, all of which contribute to a
significant rise in token cost. Therefore, compared
to other benchmarks, GRRAFN can readily scale
to very large graphs (up to 10,000 nodes) without
compromising performance and increasing token
cost.

To evaluate the effectiveness of the error feed-
back loop, we quantify the total percentage of
questions that activate this loop, as reported in Ta-
ble 2. In general, GRRAFC triggers the error feed-

back loop more frequently than GRRAFN . For
both variants, the loop is activated due to time-outs
more often than due to execution errors, under-
scoring the importance of time efficiency in graph
reasoning tasks. Overall, the backbone LLM gen-
erates correct code queries in most instances, and
the integration of an error feedback loop with a
time-out mechanism further enhances code accu-
racy and efficiency.

5 Conclusion

In this work, we introduced GRRAF, a novel
framework that integrates RAG with the code-
writing prowess of LLMs to address graph rea-
soning questions. Our approach, which operates
without additional training or reliance on prede-
fined algorithms, leverages a graph database to
store target graphs and employs an error feed-
back loop with a time-out mechanism to ensure the
generation of correct and efficient code queries.
Comprehensive experiments on the GraphInstruct
dataset and two extra tasks (indegree and outde-
gree) demonstrate that GRRAF outperforms exist-
ing state-of-the-art benchmarks, achieving 100%
accuracy on a majority of graph reasoning tasks
while effectively scaling to graphs containing up
to 10,000 nodes without incurring extra token
costs. These findings underscore the potential of
combining retrieval-based techniques with LLM-
driven code generation for solving complex graph
reasoning problems. Future work could explore
extending this framework to dynamic graph sce-
narios and additional reasoning tasks, further en-
hancing its applicability and robustness.
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A Sensitivity Analysis

Figure 7: Average accuracy of GRRAFN with different
time limit t.

Figure 8: Average accuracy of GRRAFN with different
maximum error feedback loop iteration n.

Figure 9: Average accuracy of GRRAFN with different
backbone LLM.

We perform sensitivity analyses on GRRAFN

to assess the impact of the time limit t, the maxi-
mum number of error-feedback loop iterations n,
and the choice of backbone LLM. We report the
average accuracy across all ten graph reasoning
tasks. As shown in Figure 7, the accuracy in-
creases with t up to five minutes, after which no
further gains are observed. Figure 8 indicates that
accuracy peaks at n = 3 and declines slightly
for n > 3. Finally, we evaluated GRRAFN us-
ing three backbone LLMs—GPT-4o, Claude-3.5-
Sonnet, and Llama3.1-405b-Instruct—and found
that all three yield comparable results, with GPT-
4o achieving a slightly higher average accuracy
than the others (Figure 9).

B Example Code

This section presents example code generated by
GRRAFN for each graph reasoning task in our ex-

periments: cycle detection (Figure 10), connectiv-
ity (Figure 11), bipartite graph check (Figure 12),
topological sort (Figure 13), shortest path (Fig-
ure 14), maximum triangle sum (Figure 15), maxi-
mum flow (Figure 16), subgraph matching (Figure
17), indegree calculation (Figure 18), and outde-
gree calculation (Figure 19). All these examples
produce correct answers.

We also include in Figure 20 an example
Cypher query generated by GRRAFC for the
maximum-flow task. Although this query attempts
to implement the Ford–Fulkerson algorithm, it
omits the backward residual edges, preventing any
rerouting of earlier flows. Consequently, on cer-
tain edge cases (e.g., the graph in Figure 21),
it produces incorrect results. Similarly, Figure
22 shows an instance where GRRAFC generates
an incorrect Cypher query for topological sorting.
That query builds a spanning tree rooted at a node
of zero indegree to derive the ordering—a method
that is unsound and succeeds only by chance on
some graphs.



Figure 10: An example of the final code C ′ generated for the cycle detection task.

Figure 11: An example of the final code C ′ generated for the connectivity task.

Figure 12: An example of the final code C ′ generated for the bipartite graph check task.

Figure 13: An example of the final code C ′ generated for the topological sort task.

Figure 14: An example of the final code C ′ generated for the shortest path task.

Figure 15: An example of the final code C ′ generated for the maximum triangle sum task.

Figure 16: An example of the final code C ′ generated for the maximum flow task.



Figure 17: An example of the final code C ′ generated for the subgraph matching task.

Figure 18: An example of the final code C ′ generated for the indegree calculation task.

Figure 19: An example of the final code C ′ generated for the outdegree calculation task.

Figure 20: An example of the final code C ′ in Cypher query by GARRFC generated for the maximum flow task.



Figure 21: An example directed graph with edge weights. The correct maximum flow from node 2 to 6 is 3 but the
Cypher query in Figure 20 returns 4 as the answer.

Figure 22: An example of the final code C ′ in Cypher query by GARRFC generated for the topological sort task.
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