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Abstract

Recent work by Woodworth et al. (2020) shows that
the optimization dynamics of gradient descent for over-
parameterized problems can be viewed as low-dimen-
sional dual dynamics induced by a mirror map, ex-
plaining the implicit regularization phenomenon from
the mirror descent perspective. However, the method-
ology does not apply to algorithms where update di-
rections deviate from true gradients, e.g. ADAM. We
use the mirror descent framework to study the dynam-
ics of smoothed sign descent with a stability constant
ε for regression problems. We propose a mirror map
that establishes equivalence to dual dynamics under
some assumptions. By studying dual dynamics, we
characterize the convergent solution as an approximate
KKT point of minimizing a Bregman divergence style
function, and show the benefit of tuning the stability
constant ε to reduce the KKT error.

1 Introduction

Mirror descent (MD) is an optimization method that
extends gradient descent (GD) beyond Euclidean ge-
ometries (Nemirovskij and Yudin, 1983). Central to
the MD framework is a mirror map that facilitates
transformation between a primal space where iterates
exist and a dual space where updates are performed.
By defining an appropriate mirror map, MD can adapt
to the geometry of the problem for efficient optimiza-
tion. Since its introduction, MD has attracted consid-
erable research interest in its regularization properties
and has motivated development of efficient optimiza-
tion algorithms (Beck and Teboulle, 2003; Radhakrish-
nan et al., 2020; Azizan et al., 2021; Gunasekar et al.,
2021; Sun et al., 2022, 2023).

Recent studies reveal the power of adopting an
MD perspective to interpret the optimization dynam-
ics of GD for overparameterized problems (Woodworth
et al., 2020; Li et al., 2022). Given a parameteriza-

tion of a problem, they formulate mirror maps that
establish equivalence between GD dynamics and low-
dimensional MD dynamics. The simplified dual dy-
namics lead to a characterization of the convergent
solution among all solutions in terms of the Bregman
divergence. The convergent GD solution minimizes
the Bregman divergence from the starting point. This
method is further used to analyze the effects of the
initialization shape (Azulay et al., 2021) and stochas-
ticity (Pesme et al., 2021) on the convergent solution.

Such results have been shown on data where opti-
mal solutions are easy to find, yet the underlying opti-
mization dynamics are non-trivial. The MD frame-
work provides a powerful and elegant tool for ana-
lyzing high-dimensional optimization dynamics. How-
ever, the existence of such mirror maps is highly de-
pendent on both the problem parameterization and
the optimization algorithm. Existing analyses do not
extend to many popular algorithms beyond (stochas-
tic) GD. The challenges arise from both the formu-
lation of a mirror map and the analysis of dual dy-
namics. For instance, for adaptive gradient methods
with coordinate-wise adaptive learning rates, the up-
date directions deviate from the true gradients. The
adaptivity alters the fundamental structure of the un-
derlying dynamics, rendering the current methodology
inapplicable. Our work addresses this limitation and
proposes a method of applying the MD framework to
study optimization dynamics when update directions
do not follow true gradients.

Among adaptive gradient descent methods, we ex-
amine a prototypical algorithm, smoothed sign de-
scent, which can be viewed as a smoothed version of
sign descent with a stability constant ε. Recent work
reveals a deep connection between smoothed sign de-
scent and popular optimizers such as ADAM and RM-
SProp (Kunstner et al., 2023; Ma et al., 2022; Balles
and Hennig, 2018; Bernstein et al., 2018). While sign
descent has been studied as a proxy to understand the
dynamics of more complex adaptive gradient methods
(Ma et al., 2023; Balles et al., 2020), studies (Wang
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et al., 2021, 2022) show that the stability constant
plays a key role in determining the convergence direc-
tion for classification problems. This underscores the
importance of studying smoothed sign descent and in-
vestigating the effect of the stability constant ε, which
has been underexplored in literature. We study the
dynamics of smoothed sign descent for a quadratically
parameterized regression problem. Our results high-
light the distinct properties in contrast to GD dynam-
ics, and explicitly show the relationship between the
stability constant ε and the convergent solution.

In this work, we present an analysis of MD to in-
terpret the optimization dynamics of smoothed sign
descent. We identify an initial warm-up stage unique
to smoothed sign descent, which allows us to formu-
late a mirror map for the main stage of the dynamics.
Using the mirror map, we project the complex pri-
mal dynamics onto the dual space with a simplified
structure. We further decompose the dual dynamics
into a sign descent stage and a convergence stage. The
dual dynamics interpretation enables us to connect the
convergent solution to the approximate KKT point of
minimizing a Bregman divergence style function. An
in-depth analysis of the stability constant ε reveals
its effect on reducing the KKT error, corroborating
the empirical findings on the sensitivity of the train-
ing and testing performance to the stability constant
(De et al., 2018; Liu et al., 2020; Choi et al., 2019).

Our contributions are as follows.

• We introduce the dual dynamics of smoothed
sign descent for a quadratically parameterized
regression problem using the MD framework.

• We show that after a warm-up stage, the dual
dynamics begin a sign descent stage character-
ized by approximately linear growth with similar
rates in all coordinates, and then transition into
a convergence stage characterized by diminishing
magnitude of gradients.

• We prove that the convergent solution satisfies
the approximate KKT conditions for minimizing
a Bregman divergence style function, in contrast
to the already known exact Bregman divergence
minimization property of GD dynamics. The
convergent solution found by smoothed sign de-
scent is the one that approximately minimizes
the Bregman divergence style function from the
starting point.

• We theoretically analyze the effect of the stabil-
ity constant ε on bounding the deviation from
the exact KKT point, emphasizing the benefit
of tuning the stability constant.

In Section 2, we review previous research on the prop-
erties of MD and smoothed sign descent. In Section 3,
we present our main results, including the formulation
of dual dynamics and the characterization of conver-
gent solutions. We conclude the paper in Section 4.

2 Related Work

Recent work applies the MD framework to interpret
dynamics of neural network training. The study
(Woodworth et al., 2020) discovers the equivalent low-
dimensional MD dynamics for the optimization dy-
namics of GD for overparameterized models, focus-
ing on the effect of initialization scale. However, ex-
tending their methodology to more general cases re-
mains a challenge. Li et al. (2022) identify a com-
mutative property of neural network parameterization
that enables the formulation of equivalent MD dynam-
ics. Pesme et al. (2021) use a time-varying mirror map
for stochastic GD and show the benefit of stochasticity
for inducing sparsity of the convergent solution. Azu-
lay et al. (2021) propose a warping technique to study
the effect of the initialization shape on the equivalent
MD dynamics of GD. We contribute to this line of re-
search dealing with strict gradients by extending the
framework beyond GD to a case where the adaptive
learning rate breaks the gradient structure and show-
ing distinct properties of the dual dynamics.

Research on regularization properties of MD algo-
rithms dates back to the work (Beck and Teboulle,
2003), which reveals a local regularization effect in
terms of Bregman divergence at each iteration. Re-
cent study (Gunasekar et al., 2018) shows that MD
converges to the solution that minimizes the associated
Bregman divergence from the starting point among all
solutions. Subsequent work (Azizan and Hassibi, 2019;
Azizan et al., 2021) extends this analysis to stochastic
MD for nonlinear models and prove the Bregman di-
vergence minimization property. Research so far pri-
marily focuses on standard MD settings, where the
dynamics follow the gradient directions in the dual
space. In contrast, we study the case where the dual
dynamics deviate from the gradients. We show that
the convergent solution of smoothed sign descent sat-
isfies the approximate KKT condition of minimizing
a Bregman divergence style function by bounding the
cumulative deviation.

The stability constant ε, designed to ensure numer-
ical stability for algorithms such as ADAM and RM-
SProp, is typically set to a negligible value by default.
Its impact on optimization dynamics is underexplored.
De et al. (2018) experiment with different values of
ε for ADAM and RMSProp and observe that train-
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ing and testing performance is sensitive to ε. Studies
(Nado et al., 2020; Liu et al., 2020; Choi et al., 2019)
also provide empirical evidence supporting the bene-
fit of tuning the stability constant ε. Yuan and Gao
(2020) study the effect of modifying the location of ε
in ADAM and proposes an alternative optimizer for
improved performance. We provide a theoretical jus-
tification for tuning the stability constant ε by explic-
itly showing its role in reducing the KKT error of the
convergent solution.

Our work also contributes an MD perspective to
the ongoing discussion on the implicit regularization
phenomenon in neural network training (Neyshabur
et al., 2014; Zhang et al., 2021). While many stud-
ies (Soudry et al., 2018; Arora et al., 2019; Lyu and
Li, 2020) focus on GD, fewer have investigated adap-
tive gradient methods despite the performance gap ob-
served in the paper (Wilson et al., 2017). Notably,
studies (Wang et al., 2021, 2022) find that ADAM
achieves the same convergent direction as GD in clas-
sification problems, while we prove a distinct regu-
larization property for smoothed sign descent com-
pared to GD in regression problems. Recent study
(Xie and Li, 2024) characterizes the convergent so-
lution of AdamW as training time approaches infin-
ity. In contrast, we characterize the entire dynamics
of smoothed sign descent by formulating the equivalent
dual dynamics which reveal an intrinsically simplified
structure.

3 Dual Dynamics of Smoothed
Sign Descent

3.1 Background

Let us consider the update rule of GD for minimizing
a loss function L(β) with step size η > 0:

βt+1 = βt − η∇L(βt). (1)

We suppose that the iterates βt lie in the Euclidean
space RD. Formally, the gradients ∇L(βt) lie in the
dual space RD. In GD, we obtain the updated point
by directly taking a linear combination of the iterate
and the gradient as in (1). MD, however, formally dis-
tinguishes the primal and the dual spaces using a mir-
ror map to transform between them. A mirror map
∇Φ : RD → RD is defined as the gradient of a po-
tential function Φ : RD → R, which is any differen-
tiable and strictly convex function. The mirror map
∇Φ maps the primal variable β to the dual variable
denoted by ϕ ∈ RD. Each iteration of MD for mini-
mizing L(β) follows the following steps, where the step

size η > 0:

ϕt = ∇Φ(βt) (2)

ϕt+1 = ϕt − η∇L(βt) (3)

βt+1 = (∇Φ)−1(ϕt+1). (4)

By plugging in (2), we can rewrite the MD update (3)
in the dual space as:

∇Φ(βt+1) = ∇Φ(βt)− η∇L(βt)). (5)

In the continuous-time limit when η → 0, we get the
dual dynamics of β(t):

d∇Φ(β(t))

dt
= −∇L(β(t)). (6)

A key element of MD is the Bregman divergence
that serves as the notion of measuring the distance
between two points in the primal space.

Definition 3.1 (Bregman divergence). For β1,β2 ∈
RD, the Bregman divergence associated with a poten-
tial function Φ from β1 to β2 is defined as

DΦ(β1,β2) = Φ(β1)− Φ(β2)− ⟨β1 − β2,∇Φ(β2)⟩.

Bregman divergence generalizes squared Euclidean
distance and captures different geometric structure of
the space through the choice of Φ. When Φ(β) =
1
2∥β∥

2
2, the associated Bregman divergence reduces to

the squared Euclidean distance, the mirror map ∇Φ
becomes an identity map, and MD simplifies to GD.

3.2 Problem Setup

We suppose that there are N examples with D > N
features {(x(i), y(i))}i=1,...,N , where x(i) ∈ RD, y(i) ∈
R. Let us denote the data matrix by X ∈ RN×D,
where each row is x(i), and denote the labels of the
examples by y ∈ RN . The Hadamard product is
denoted by ⊙. We consider a regression problem of
minimizing the following loss function with respect to

w :=

[
w+

w−

]
∈ R2D, where w+,w− ∈ RD:

L(w) =
1

4

(
X
(
w+ ⊙w+ −w− ⊙w−)− y

)⊤(
X
(
w+ ⊙w+ −w− ⊙w−)− y

)
. (7)

We let β := w+ ⊙ w+ − w− ⊙ w− ∈ RD

denote the regression parameter, and L(β) =
1
4 (Xβ − y)

⊤
(Xβ − y) is the standard quadratic loss.

This parameterization of β by w can also be viewed as
a 2-layer diagonal linear neural network with weights
w ∈ R2D (see Section 4 of the paper (Woodworth
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et al., 2020) for a detailed study of the model). De-
spite its simplicity, this setup has been used to prove
insightful results for neural networks training (Wood-
worth et al., 2020; Pesme et al., 2021; Nacson et al.,
2022; Vivien et al., 2022).

When GD is applied to minimize loss (7) with re-
spect tow, from the GD update rule with infinitesimal
step size η we get

dw+(t)

dt
= −∇w+L(w(t)),

w−(t)

dt
= −∇w−L(w(t)).

Using the chain rule, we get the optimization dynamics
of β(t):

dβ(t)

dt
=− 2w+(t)⊙∇w+L(w(t))

+ 2w−(t)⊙∇w−L(w(t)). (8)

Previous work (Woodworth et al., 2020) shows that by
defining a potential function:

Ψα(β) :=
1

4

(
D∑
i=1

βi arcsinh

(
βi

2α2

)
−
√
β2
i + 4α4

)
,

(9)
where α > 0 is the initialization scale, we can project
the dynamics (8) onto the dual space using the mirror
map ∇Ψα. Here the gradient is taken with respect to
β. By derivation in Appendix C, it follows that the
dual dynamics are given by:

d∇Ψα(β(t))

dt
= −∇βL(β(t)). (10)

Since (8) and (10) are equivalent, in the continuous-
time limit, the evolution of β(t) using GD can be in-
terpreted as following the MD algorithm (2)-(4) with
mirror map ∇Ψα.

The dual dynamics (10) reveal an intrinsically low-
dimensional structure of the dynamics of β(t) in the
overparameterized setting where N < D. Specifi-
cally, the gradients ∇βL(β) in the right-hand side of
(10) are confined in a subspace span{x(1), ...,x(N)},
which has dimension of at most N . Furthermore, by
analyzing the dual dynamics, previous work (Wood-
worth et al., 2020) proves that the convergent solution
β∞ := limt→∞ β(t) satisfies the KKT conditions of
the constrained optimization problem:

β∞ = argmin
β∈RD s.t. Xβ=y

DΨα
(β,β(0)). (11)

In this work, we study the dynamics of smoothed
sign descent for minimizing (7). For smoothed sign
descent, the weights are updated according to

wt+1 = wt − η · ∇wL(wt)

|∇wL(wt)|+ ε1
,

where ε > 0 is the stability constant and the op-
erations are taken element-wise. Smoothed sign de-
scent can be viewed as an adaptive gradient method
with coordinate-wise adaptive learning rate ηi,t =

η
|[∇wL(wt)]i|+ε for each i. We suppose that the weights

are initialized by w(0) = α1, α > 0. In the
continuous-time limit, the dynamics of the weights be-
come

dw(t)

dt
= − ∇wL(w(t))

|∇wL(w(t))|+ ε1
. (12)

This yields the dynamics of the regression parameter
β(t) as follows, with β(0) = 0:

dβ(t)

dt
=− 2w+(t)⊙ ∇w+L(w(t))

|∇w+L(w(t))|+ ε1

+ 2w−(t)⊙ ∇w−L(w(t))

|∇w−L(w(t))|+ ε1
. (13)

With coordinate-wise adaptive learning rate, the
update direction deviates from the true gradients and
the mirror map ∇Ψα for GD no longer holds. It leads
to two interesting questions:

1. Can we formulate a mirror map to show equiva-
lent dual dynamics for (13)?

2. Can we use the dual dynamics to characterize
the convergent solution among all solutions?

3.3 Main Results

In this section, we present our answers to the two ques-
tions. We construct a mirror map for smoothed sign
descent that reveals a simplified structure of the dual
dynamics. We analyze different stages of the induced
dual dynamics, and prove that the convergent solu-
tion satisfies approximate KKT conditions for mini-
mizing a Bregman divergence style function, which is
also defined in (Pesme et al., 2021). The weight dy-
namics (12) form a coupled system of nonlinear ODEs,
with the stability constant ε adding another layer of
complexity. Solving this ODE system analytically is
intractable. Therefore, we make the following assump-
tions to facilitate our analysis.

Assumption 3.2. We assume that y(n) are non-zero,
and that there exists a permutation of the columns of X
such that X⊤X is block-diagonal with N rank-1 blocks
denoted by B(n) ∈ RDn×Dn for n = 1, . . . , N .

It is easy to see that this condition is equiva-
lent to requiring that each row of X has Dn ≥ 1

non-zero elements denoted by x
(n)
1 , . . . , x

(n)
Dn

, where∑N
n=1 Dn = D. While this assumption yields an easy
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optimization problem in the primal space, the dynam-
ics of smoothed sign descent are very complex and in-
triguing. We require the stability constant ε to be
small relative to components of the initial gradient so
that it does not overshadow the essential behavior of
the dynamics as a smoothed version of sign descent.
We notice that w = 0 is a stationary point of the
weight dynamics (12). Since the weights are initial-
ized as w(0) = α1 where α > 0, we assume that α is
chosen not so small to avoid being stuck near a sta-
tionary point, and also not so large that it dominates
the final convergent solution.

Assumption 3.3. We assume that for each n ∈
{1, . . . , N} and i ∈ {1, . . . , Dn}, the stability constant
ε and the initialization scale α satisfy:

0 ≤ ε ≤ 1

9

|x(n)
i ||y(n)| 32√

2
∑Dn

k=1 |x
(n)
k |

,

9ε

4
∣∣∣x(n)

i y(n)
∣∣∣ ≤ α ≤ 1

3

√
|y(n)|

2
∑Dn

k=1 |x
(n)
k |

.

3.3.1 Three Stages

We begin by studying the sign and monotonicity of
w+(t) and w−(t) by the following lemma assuming
they satisfy (12). Proofs of the results in this section
can be found in Appendix A.

Proposition 3.4. For each coordinate i ∈ {1, . . . , D},

• w+
i (t) and w−

i (t) are always non-negative,

• if w+
i (0)

′ > 0, then w+
i (t)

′ ≥ 0 and w−
i (t)

′ ≤ 0
for all t,

• if w+
i (0)

′ ≤ 0, then w+
i (t)

′ ≤ 0 and w−
i (t)

′ ≥ 0
for all t.

For each i, based on this proposition, either w+
i (t)

or w−
i (t) is monotonically non-decreasing. We de-

note the dominating weight that is monotonically non-
decreasing by ui, and we denote the one that is non-
increasing by vi. A key identity in the derivation of
the mirror map for GD is that w+

i (t)w
−
i (t) = α2 holds

throughout the dynamics. However, this quantity is
not conserved when coordinate-wise adaptivity is ap-
plied. In fact, we can show that w+

i (t)w
−
i (t) < α2

for t > 0. The adaptive learning rate ensures simi-
lar rate of change across all coordinates, and enables
sufficient updates even when the gradient magnitude
is relatively small. In particular, this allows the non-
dominating weight vi(t) to diminish to negligible val-
ues early on. Based on this observation, we identify
an initial warm-up stage of the dynamics where vi(t)

decreases to and remains below a value on the order ε
across all coordinates. The following lemma also shows
that this warm-up stage lasts no longer than t = 2α.

Proposition 3.5. There exists T0 ∈ (0, 2α] such that
for all t ≥ T0, vi(t) ≤ 2ε

|x(n)
i y(n)|

for all i.

The proof hinges on upper bounding the value
of vi(t) when the gradient component [∇vL(w(t))]i
reaches ε at t = ti. Before ti, the absolute value
of the derivative |v′i(t)| is always greater than 1

2 ,
ensuring rapid decreasing of vi(t). Meanwhile, the
non-negativity of vi(t) by Proposition 3.4 guaran-
tees that the rapid decreasing stage lasts no longer
than 2α. Based on the expression [∇vL(w(t))]i =

vi(t)|x(n)
i r(n)(t)|, we continue to lower bound the resid-

ual |r(n)(t)| using the maximal growth of ui(t) during
this short time period. Finally, the lower bound of
|r(n)(ti)| leads to the upper bound of vi(ti) at ti. We
complete the proof by letting T0 be the largest ti across
all coordinate i.

During the warm-up stage, both u(t) and v(t) fol-
low sign descent approximately, which allows us to ap-
proximate the primal dynamics of β(t) by sign descent.
After T0, the dynamics of β(t) transition into the main
stage, where v(t) remains small and the magnitude of
β(t) is denominated by u(t). While the primal dy-
namics become complex, we formulate a mirror map
so that the dual dynamics have a simplified structure
that closely aligns with the sign of ∇uL(w(t)).

Proposition 3.6 (Dual dynamics of smoothed sign
descent). For t > 0, we define a potential function

Φt(β) = 2
3

∑D
i=1

(
|βi|+ v2i,t

) 3
2 . The induced mirror

map ∇Φt : RD → RD maps β(t) to the dual space.
The dynamics in the dual space follow

d∇Φt(β(t))

dt
= − sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε1
. (14)

The potential function is time-varying with a time-
dependent parameter vi,t := vi(t). Pesme et al. (2021)
also employ a time-varying potential function to con-
struct a mirror map for the dynamics of stochastic GD.
Radhakrishnan et al. (2020) conduct a thorough anal-
ysis of the convergence of MD with time-dependent
mirrors. For t ≥ T0, since the non-dominating weights
vi(t) diminish to small values by Proposition 3.5, the
potential function has a close connection with the l3/2-
norm of β(t), in contrast with the potential function
(9) for GD.

The dual dynamics (14) indeed reveal a greatly
simplified structure compared to the primal dynam-
ics (13). However, it differs from standard MD dy-
namics (6) where the updates in the dual space align
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with the gradients exactly. The alignment has allowed
previous work to show that the convergent solution
satisfies the KKT conditions for Bregman divergence
minimization as in (11). Therefore, further analysis of
the dual dynamic (14) is required to understand the
deviation from following the true gradients.

Proposition 3.7. There exists T > T0 such that we
can divide the dynamics into two stages:

• Sign descent stage: for t ∈ [T0, T ),
|∇uL(w(t))|i > ε for all i,

• Convergence stage: for t ∈ [T,∞),
mini |∇uL(w(t))|i ≤ ε.

At the beginning, the dual dynamics resemble sign
descent when gradient components are relatively large
compared to ε. The stability constant comes into effect
when |∇uL(w)|i becomes small. In Proposition 3.7,
we prove the transition between the two stages by
studying the evolution of the magnitude of each gra-
dient component. Importantly, Proposition 3.7 shows
that once a gradient value reaches ε, it remains small
for the duration of the dynamics. The dynamics then
enter a convergence stage with diminishing magnitude
of gradients. Eventually, the dynamics approximate
the direction of ∇uL(w) as all gradient components
approach zero (see Lemma A.3 in Appendix A).

We illustrate the transition of the three stages in
Figure 1. We randomly generate a dataset with N = 2
and D = 5 that satisfies Assumption 3.2 and set the
initialization scale α = 0.1. We simulate the dynamics
(12) of smoothed sign descent using the ODE solver in
SciPy and visualize the evolution of primal and dual
variables. In the experiments, T0 is calculated as the
value when maxi |∇vL(w(t))|i first becomes ε, while
T is calculated as the value when mini |∇uL(w(t))|i
first becomes ε. Based on smoothed sign descent (see
(14)) and Proposition 3.7, we expect the change to be
linear in [T0, T ], and incoherent behavior in [T,∞). In
the initial stage when t < T0, we observe that the pri-
mal variable has linear change across all coordinates.
During the sign descent stage when T0 ≤ t < T , the
dual variable continues growing linearly with approx-
imately uniform rate in all coordinates, while β(t) no
longer changes linearly. After T , the dynamics enter
the convergence stage, where the primal and dual vari-
ables gradually approach the convergent point. We
also observe that the value of ε plays a key role in
shaping the dynamics. For smaller ε, the dual variable
follows the sign descent more closely and converges to
values concentrated around two distinct points across
all coordinates; while for larger ε, the dual variable
shows greater dispersion among the values across all

coordinates at convergence. We quantify the relation-
ship between the value of ε and the convergent solution
in the following analysis.

3.3.2 Characterization of Convergent Solu-
tion by Bregman Divergence

The convergent solution of smoothed descent dynam-
ics deviates from the exact KKT point of Bregman
divergence minimization. However, we can show that
it satisfies the δ-KKT conditions for a Bregman di-
vergence style function. In this section, we build on
the results about stage transitions and conduct an in-
depth analysis to quantify and bound the error δ. To
emphasize the role of ε in bounding the error, we im-
pose an additional assumption on the block-diagonal
structure from Assumption 3.2.

Assumption 3.8. We assume that each block B(n) of
the block-diagonal matrix X⊤X has size Dn = 2.

The 2D block structure enables us to derive an ex-
plicit dependence of the bounds for δ on the stabil-
ity constant ε, while keeping the overparameterization
setting for smoothed sign descent. By the spectral the-
orem, we can write X⊤X = QΛQ⊤ for an orthogonal
matrix Q and a diagonal matrix Λ. The matrix Q is
block-diagonal, where each block is expressed as a 2D
rotation matrix parameterized by θn. We have

B(n) =

[
cos θn − sin θn
sin θn cos θn

] [
λn 0
0 0

] [
cos θn sin θn
− sin θn cos θn

]
,

where λn > 0 and cos θn, sin θn are non-zero by As-
sumption 3.2. Without loss of generality, we assume
that | cos θn| ≥ | sin θn|, which can be achieved by or-
dering the columns of X. We first present the result
for N = 1 to illustrate the key findings and then gen-
eralize the results to N > 1. To this end, we show in
Appendix A that there exists v∞ = limt→∞ v(t) and

we let Φ∞(β) = 2
3

∑D
i=1

(
|βi|+ (v∞i )2

) 3
2 .

Theorem 3.9. As t → ∞, the regression param-
eter converges to an interpolating solution. We let
β∞ := limt→∞ β(t), which exists by Lemma A.3 in
Appendix A, and let β0 := β(0). We define a Breg-
man divergence style function E associated with the
potential function Φ for smoothed sign descent by

E(β, β̄) := Φ∞(β)− Φ0(β̄) + ⟨∇Φ0(β̄), β̄ − β⟩.

The convergent solution β∞ satisfies the δ-KKT con-
ditions for the constrained optimization problem:

min
β∈RD s.t. Xβ=y

E(β,β0) (15)
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(a) ε = 0.001 (b) ε = 0.002

(c) ε = 0.005 (d) ε = 0.01

Figure 1: Evolution of primal variable β(t) and dual variable ∇Φt(β(t)) in R5 of smoothed sign descent with
different values of stability constant ε. The vertical line t = T0 marks the transition from warm-up stage to the
sign descent stage, and the line t = T marks the transition to the convergence stage.

with the error δ(ε) bounded by max {|M+|, |M−|},
where

M+ := (| cos θ1| − | sin θ1|)

(
λ
− 1

4
1 |y(1)| 12 −

√
2ε

4λ
1
2
1 |y(1)|

)
,

M− := (| cos θ1| − | sin θ1|)
(
(2λ1)

− 1
4 |y(1)| 12 − α

)
− 2

√
2ε

λ
3
4
1 | sin θ1||y(1)|

1
2

− 3
√
2ε

λ
1
2
1 | sin θ1y(1)|

ln

(
λ

1
4
1 | sin θ1||y(1)|

3
2

√
2ε

)
.

We present the main idea of the proof here and pro-
vide the full proof in Appendix B. First, we observe
the connection between the gradient of E and the inte-
gral of the dual dynamics (14) with respect to t. The
dual dynamics structure enables us to calculate the
deviation δ from satisfying the stationary condition
using the dominating weights u∞. Next, using an or-
thogonal projection, we reduce the problem to bound-
ing the absolute value of ∆ := | cos θ1| (u∞

2 − u2(0))−
| sin θ1| (u∞

1 − u1(0)). To bound ∆, we leverage the ra-
tios between u′

1(t) and u′
2(t) in different stages of the

dual dynamics, and focus on bounding the key quan-
tity u2(T ) at the transition between the two stages.

During the sign descent stage, the leading terms of
u′
1(t) and u′

2(t) are both 1 in the Taylor expansion
at ε = 0, which guarantees a lower bound for u2(T ).
Being in the convergence stage, u1(t) dominates the
growth, which allows us to derive an upper bound for
u∞
2 . Finally, a lower bound for u∞

2 leads to ∆ ≥ M−,
while an upper bound leads to ∆ ≤ M+.

The derivation relies on the key quantity of u2(T )
at the stage transition when the smallest gradient com-
ponent reaches ε. The value of ε is crucial in determin-
ing the stage transition and it eventually affects the
convergent solution. We further reveal the relationship
between ε and the upper bound of δ in the following
corollary. We provide the proof in Appendix B.

Corollary 3.10. We let Iε be the range of ε implied
by Assumption 3.3. There exists a non-degenerate in-
terval I ′ ⊆ Iε such that for all ε ∈ I ′,

δ(ε) ≤ M̄ − (| cos θ1| − | sin θ1|)
√
2ε

4λ
1
2
1 |y(1)|

,

where M̄ := (| cos θ1| − | sin θ1|)λ
− 1

4
1 |y(1)| 12 is a quan-

tity independent of ε.

The result highlights the role of ε in bounding the
KKT error. Given a fixed dataset, choosing a larger ε
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within a certain interval effectively shrinks the upper
bound on the KKT error δ. It suggests that by using
a proper value of ε, the dynamics can converge to a
solution closer to the point with the E minimization
property. Therefore, our result provides a theoretical
ground for the benefit of tuning ε versus using a small
default value for adaptive gradient methods.

To visualize the convergent solutions for different
values of ε, we plot the trajectory of β(t) using ran-
domly generated data with N = 1 and D = 2 in Fig-
ure 2. We note that as ε becomes larger, the conver-
gent solution is closer to the solution with the minimal
value of E to the initial point among all solutions. We
also compute the value of E to the initial point for con-
vergent solutions using different ε and plot the trend
in Figure 3. The plot confirms that for larger ε, the
convergent solutions have smaller values of E(β∞,β0).

Figure 2: Trajectories of β(t) in R2 for different values
of stability constant ε.

Figure 3: Bregman divergence style function value
E(β∞,β0) of convergent solutions with different val-
ues of stability constant ε.

Extension to N > 1 We generalize the results to
the case when N > 1 in the following corollaries. The
proofs can be found in Appendix B. We show that the
convergent solution satisfies approximate KKT con-

ditions of minimizing E(β,β0) among all solutions.
Within a certain interval, a larger value of ε leads to a
greater reduction of the KKT error. The implications
for tuning the stability constant ε still hold.

Corollary 3.11. For N > 1, let us suppose Assump-
tion 3.8 is satisfied. As t → ∞, the regression pa-
rameter converges to an interpolating solution β∞ that
satisfies the δ̄-KKT conditions for

min
β∈RD s.t. Xβ=y

E(β,β0)

with the error δ̄(ε) bounded by∑N
n=1 max

{∣∣∣M (n)
+

∣∣∣, ∣∣∣M (n)
−

∣∣∣}, where
M

(n)
+ := (| cos θn| − | sin θn|)

(
λ
− 1

4
n |y(n)| 12 −

√
2ε

4λ
1
2
n |y(n)|

)
,

M
(n)
− := (| cos θn| − | sin θn|)

(
(2λn)

− 1
4 |y(n)| 12 − α

)
− 2

√
2ε

λ
3
4
n | sin θn||y(n)|

1
2

− 3
√
2ε

λ
1
2
n | sin θny(n)|

ln

(
λ

1
4
n | sin θn||y(n)|

3
2

√
2ε

)
.

Corollary 3.12. There exists a non-degenerate inter-
val J ⊆ Iε such that for all ε ∈ J ,

δ̄(ε) ≤
N∑

n=1

(| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
−(

N∑
n=1

(| cos θn| − | sin θn|)
√
2

4λ
1
2
n |y(n)|

)
ε.

Extension to Higher Order Models Our analysis
is generalizable to parameterizations with higher order
H ≥ 2 in weights, given by β = uH−vH . Here sH de-
notes applying Hadamard product H times on vector
s. This parameterization can be interpreted as a diag-
onal linear neural network of depth H, as explained in
(Woodworth et al., 2020). The mirror map is induced
by a potential function closely related to l2− 1

H
-norm

of β, given by ΦH
t (β) :=

∑D
i=1

(
|βi|+ vHi,t

)2− 1
H , where

vi,t = O(ε). When the depth H → ∞, the potential
function approximates the squared l2-norm.

4 Conclusion

In this work, we propose an MD perspective of the
dynamics of smoothed sign descent for overparameter-
ized regression problems. We extend existing results
beyond GD to a case where update directions deviate

8



from true gradients due to adaptivity, and formulate
the equivalent dual dynamics with a simplified struc-
ture. We also study the role of the stability constant
ε in bounding the deviation of the convergent solution
from minimizing a Bregman divergence style function.
The finding supports the benefit of tuning the stability
constant ε.
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A Proof of Results in Section 3.3.1

Notation. Assumption 3.2 guarantees that the non-zero entries inX are non-overlapping across rows. Therefore,
we can partition the index set I = {1, . . . , D} into N disjoint subsets I(1), . . . , I(N) such that

I =

N⋃
n=1

I(n), I(n) :=
{
i ∈ [D] : x

(n)
i ̸= 0

}
. (16)

We define w+(n),w−(n),β(n) ∈ RDn as the subvectors of w+, w− and β corresponding to the indices in I(n),
respectively. Similarly, we define g+(n), g−(n) as subvectors of gradients ∇w+L(w),∇w−L(w) corresponding to
the indices in I(n). We let w(n) :=

[
w+(n), w−(n)

]
∈ R2Dn and g(n) :=

[
g+(n), g−(n)

]
∈ R2Dn . The weight

dynamics (12) can be decomposed into N autonomous ODE systems:

dw(n)(t)

dt
= F (n)

(
w(n)(t)

)
:= − g(n)(t)

g(n)(t) + ε1
, (17)

where w(n)(0) = α1 for each n. The residual for each n is defined by r(n)(t) := y(n) −
∑Dn

i=1 x
(n)
i β

(n)
i (t). In

this section, we prove the results for an arbitrary n. We omit the superscripts (n) when possible to simplify the
notation.

A.1 Proof of Proposition 3.4

Proof. For all i = 1, . . . , Dn, it is easy to see that g+i (t) = −w+
i (t) · xi · r(t), g−i (t) = w−

i (t) · xi · r(t). The

dynamics follow w+
i (t)

′ = − g+
i (t)

|g+
i (t)|+ε

, w−
i (t)

′ = − g−
i (t)

|g−
i (t)|+ε

.

First, we show that for all i, w+
i (t), w

−
i (t) ≥ 0 always hold. Suppose for contradiction that w+

i (t
′) < 0 for

some t′. Since w+
i (0) = w−

i (0) = α > 0, by continuity of w+
i (t), there exists t0 ∈ (0, t′) such that w+

i (t0) = 0
and w+

i (t0)
′ < 0. However, w+

i (t0) = 0 implies g+i (t0) = 0 and w+
i (t0)

′ = 0. Therefore, w+
i (t) never changes

sign and is always non-negative. Similarly, we can show that w−
i (t) is always non-negative.

Next, we show that for each i, if w+
i (0)

′ > 0, then w+
i (t)

′ ≥ 0, w−
i (t) ≤ 0. Relation w+

i (0)
′ = αxiy > 0

implies that xiy > 0. Therefore, xir(0) = xiy > 0. Let us suppose for contradiction that there exists t′ > 0
such that xir(t

′) < 0. By continuity of xir(t), there exists t0 ∈ (0, t′) such that xir(t0) = 0. Since xi ̸= 0 by
assumption, we must have r(t0) = 0. In turn, xjr(t0) = 0 and g+j (t0) = g−j (t0) = 0 for all j = 1, . . . , Dn. As a

result, F (n)
(
w(n)(t0)

)
= 0 and w(n)(t0) is an equilibrium of the autonomous ODE system (17). It follows that

for all t ≥ t0, w
+(n)(t) = w+(n)(t0) and w−(n)(t) = w−(n)(t0). Therefore, we get xir(t) = xir(t0) = 0 for all

t ≥ t0. However, this contradicts that xir(t
′) < 0 and t′ > t0. Thus, we must have xir(t) ≥ 0 for all t ≥ 0. Since

w+
i (t), w

−
i (t) ≥ 0, it follows that g+i (t) ≤ 0 and g−i (t) ≥ 0 for all t. We conclude w+

i (t)
′ ≥ 0 and w−

i (t)
′ ≤ 0 for

all t.
If w+

i (0)
′ = αxiy ≤ 0, since xi and y are non-zero by assumption, we must have xiy < 0. Using similar

arguments, it follows that w+
i (t)

′ ≤ 0 and w−
i (t)

′ ≥ 0 for all t.

Lemma A.1. Residual r(t) never changes sign and its absolute value is always non-increasing.

Proof. We have r(0) = y ̸= 0 by assumption. When r(0) > 0, suppose for contradiction that there exists
t′ > 0 such that r(t′) < 0. By continuity, we must have r(t0) = 0 for some t0 ∈ (0, t′). It follows that
g+i (t0) = g−i (t0) = 0 for all i = 1, . . . , Dn. In turn, w+

i (t0)
′ = w−

i (t0)
′ = 0 for all i and w(n)(t0) is an equilibrium

of the autonomous ODE system (17). Therefore, w+
i (t) = w+

i (t0) and w−
i (t) = w−

i (t0) for all t ≥ t0. We
conclude r(t) = r(t0) = 0 for all t ≥ t0. This contradicts that r(t

′) < 0 for t′ > t0. As a result, r(t) ≥ 0 for all t.
Similarly, when r(t) < 0, it follows that r(t) ≤ 0 for all t.
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Next, we compute the derivative of r(t) with respect to t as

r′(t) = −2

Dn∑
i=1

xi

(
w+

i (t) · w
+
i (t)

′ − w−
i (t) · w

−
i (t)

′)
= −2

Dn∑
i=1

xi

(
w+

i (t) ·
w+

i (t)xir(t)

|w+
i (t)xir(t)|+ ε

− w−
i (t) ·

−w−
i (t)xir(t)

|w−
i (t)xir(t)|+ ε

)

= −2

Dn∑
i=1

x2
i

(
(w+

i (t))
2

|w+
i (t)xir(t)|+ ε

+
(w−

i (t))
2

|w−
i (t)xir(t)|+ ε

)
r(t).

Notice that x2
i

(
(w+

i (t))2

|w+
i (t)xir(t)|+ε

+
(w−

i (t))2

|w−
i (t)xir(t)|+ε

)
≥ 0. When r(0) > 0, we have shown that r(t) ≥ 0 for all t. It

follows that r′(t) ≤ 0 for all t. Similarly, when r(0) < 0, we have r(t) ≤ 0 and r′(t) ≥ 0 for all t. Hence, the
magnitude of the residual r(t) is always non-increasing.

Following the notation in Section 3.3.1, we let ui denote the dominating weight, and let vi represent the
non-dominating weight, i.e.,

ui(t) :=

{
w+

i (t) if w+
i (0)

′ > 0,

w−
i (t) else,

vi(t) :=

{
w−

i (t) if w+
i (0)

′ > 0,

w+
i (t) else.

If xiy > 0, then βi = u2
i − v2i ; if xiy < 0, then βi = −u2

i + v2i . Therefore, for all i,

βi(t) = sgn(xiy)
(
u2
i (t)− v2i (t)

)
. (18)

We define

fi(t) := −ui(t)|xir(t)|, hi(t) := vi(t)|xir(t)|.

In turn, we have

u′
i(t) = − fi(t)

|fi(t)|+ ε
=

ui(t)|xir(t)|
ui(t)|xir(t)|+ ε

,

v′i(t) = − hi(t)

|hi(t)|+ ε
= − vi(t)|xir(t)|

vi(t)|xir(t)|+ ε
.

The residual can be written as

r(t) = y −
Dn∑
k=1

xkβi(t) (19)

= y −
Dn∑
k=1

sgn(y) sgn(xk) · xk

(
u2
k(t)− v2k(t)

)
(20)

= sgn(y)

(
|y| −

Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

))
. (21)

By Lemma A.1, r(t) never changes sign. Since r(0) = sgn(y)|y|, then for all t,

|r(t)| = |y| −
Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

)
. (22)
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A.2 Proof of Proposition 3.5

Proof. First, we show the existence of ti > 0 such that hi(ti) = ε for each i. By Assumption 3.3, hi(0) = α|xiy| ≥
2ε. Let us suppose for contradiction that hi(t) > ε for all t. Then v′i(t) < − ε

ε+ε = − 1
2 for all t, and for t > 2α,

vi(t) < α − 1
2 t < 0. However, by Proposition 3.4, vi(t) is always non-negative. It yields hi(t

′
i) < ε for some t′i.

Since hi(0) ≥ 2ε, by continuity of hi(t), there exists ti such that hi(ti) = ε. It follows that ti ≤ 2α. Because
h2(t) ≥ ε for t ≤ ti, v

′
2(t) ≤ − 1

2 . If ti > 2α, then v2(ti) < α − 1
2 ti < 0, which is a contradiction. We conclude

ti ∈ (0, 2α].
Next, we show that |r(ti)| is lower bounded. Using (22), we get

|r(t)| = |y| −
Dn∑
i=1

|xi|
(
u2
i (t)− v2i (t)

)
≥ |y| −

Dn∑
i=1

|xi|u2
i (t).

For all i, u′
i(t) ≤ 1 always holds. It follows that ui(t) ≤ α+t for all t. Since |r(t)| is non-increasing by Lemma A.1,

and using ti ≤ 2α, it follows that

|r(ti)| ≥ |r(2α)| ≥ |y| −
Dn∑
i=1

|xi| (α+ 2α)
2
= |y| − 9α2

Dn∑
i=1

|xi|.

By Assumption 3.3, 9α2 ≤ |y|
2
∑Dn

i=1 |xi|
, and thus

|r(ti)| ≥ |r(2α)| ≥ |y| − |y|
2

=
|y|
2
. (23)

Since hi(ti) = vi(ti)|xir(ti)| = ε, we get vi(ti) ≤ 2ε
|xiy| . Function vi(t) is non-increasing by Proposition 3.4, so for

all t ≥ ti we have vi(t) ≤ 2ε
|xiy| . The argument holds for all i = 1, . . . , Dn and for all n. We complete the proof

by letting T0 := max{ti}.

A.3 Proof of Proposition 3.6

Proof. Let us define the potential function by Φt(β(t)) :=
2
3

∑D
i=1

(
|βi(t)|+ v2i,t

) 3
2 for all t, where vi.t := vi(t) is

a parameter for the time-varying potential. We get the dual variable using the mirror map

∇Φt(β(t)) = sgn(β(t))⊙
(
|β(t)|+ v2

t

) 1
2 ,

where operations are taken element-wise. The Hessian ∇2Φt(β(t)) is a diagonal matrix with diagonal elements
sgn(βi(t))

2(|βi(t)|+v2
i,t)

1
2
. Using the chain rule, we compute the dual dynamics

d∇Φt(β(t))

dt
=⟨∇2Φt(β(t)),

dβ(t)

dt
⟩+ ⟨∇v∇Φt(β(t)),

dv(t)

dt
⟩

=sgn(β(t))⊙
(
|β(t)|+ v2

t

)− 1
2 ⊙

(
u(t)⊙ du(t)

dt
− v(t)⊙ dv(t)

dt

)
+ sgn(β(t))⊙

(
|β(t)|+ v2

t

)− 1
2 ⊙ v(t)⊙ dv(t)

dt

=sgn(β(t))⊙ du(t)

dt

=− sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε1
.
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Lemma A.2. For all i, j ∈ {1, . . . , Dn}, |xi| ≥ |xj | implies ui(t) ≥ uj(t) for all t ≥ 0.

Proof. If |xi| = |xj |, since ui(0) = uj(0) = α, then u′
i(t) = u′

j(t) and ui(t) = uj(t). Suppose |xi| > |xj |. Let
ū(t) := ui(t)− uj(t). Then we have ū(0) = α− α = 0.

First, we show that there exists a small neighborhood B such that ū(t) > 0 for t ∈ B. Because ui(t), uj(t)

are differentiable everywhere, ū(t) is differentiable for all t ≥ 0. Inequality |xi| > |xj | implies u′
i(0) =

α|xiy|
α|xiy|+ε >

α|xjy|
α|xjy|+ε = u′

j(0). As a result, ū′(0) > 0. Using differentiability of ū(t) at t = 0, we get

lim
τ→0+

ū(τ)− ū(0)

τ − 0
= lim

τ→0+

ū(τ)

τ
= ū′(0). (24)

Let ϵτ := ū′(0)
3 > 0. By definition of limit in (24), there exists δτ > 0 such that for all τ ∈ (0, δτ ),

∣∣∣ ū(τ)τ − ū′(0)
∣∣∣ <

ϵτ . Therefore,
ū(τ)
τ − ū′(0) > −ϵτ = − ū′(0)

3 . It follows that ū(τ) > 2τ
3 ū′(0) > 0 for all τ ∈ (0, δτ ).

Next, we show that ū(t) ≥ 0 for all t > 0. Suppose for contradiction that there exists t > 0 such that
ū(t) < 0. Let t0 := inf{t : t > 0, ū(t) < 0}. We have ū(t0) ≤ 0 and ū(t) ≥ 0 for t ∈ (0, t0) by definition. We
must have t0 ≥ δτ > δτ

2 > 0 as we have shown that ū(t) > 0 for t ∈ (0, δτ ). Since ū(t) is differentiable, by the

Mean Value Theorem, there exists t1 ∈ ( δτ2 , t0) such that ū′(t1) =
ū(t0)−ū( δτ

2 )

t0− δτ
2

. Since ū(t0) ≤ 0 and ū( δϵ2 ) > 0,

we have ū′(t1) < 0. Therefore,

ū′(t1) = u′
i(t1)− u′

j(t1)

=
ui(t1)|xir(t1)|

ui(t1)|xir(t1)|+ ε
− uj(t1)|xjr(t1)|

uj(t1)|xjr(t1)|+ ε

< 0.

The inequality implies that ui(t1)|xir(t1)| < uj(t1)|xjr(t1)|. By assumption, we have |xi| > |xj |, and thus we
must have ui(t1) < uj(t1), i.e., ū(t1) < 0. However, t1 < t0 and this contradicts that ū(t) ≥ 0 for all t ∈ (0, t0).
Thus, ui(t) ≥ uj(t) always holds.

A.4 Proof of Proposition 3.7

Proof. First, we show that for all i, there exists Ti such that |∇uL(w(Ti))|i = fi(Ti) = ε. Suppose for contra-
diction that fi(t) > ε for all t. We have u′

i(t) > 1
2 and ui(t) ≥ α + t

2 . Without loss of generality, we assume

r(0) = y > 0. For t > 2
√

|y|
|xi| , the residual is negative due to

r(t) = y − |xi|
(
u2
i (t)− v2i (t)

)
−

Dn∑
k ̸=i

|xk|
(
u2
i (t)− v2i (t)

)
≤ y − |xi|

(
u2
i (t)− v2i (t)

)
≤ y − |xi|

(α+

√
|y|
|xi|

)2

− α2


< y − |xi|

|y|
|xi|

= 0.

However, this contradicts that r(t) never flips sign by Lemma A.1. Hence, there exists T ′
i such that fi(T

′
i ) ≤ ε.

By continuity, there exists t ∈ (0, T ′
i ] such that fi(t) = ε. Let Ti := min {t : 0 ≤ t ≤ T ′

i , fi(t) = ε}. Therefore,

fi(Ti) = ε, and fi(t) > ε for t < Ti. (25)

Next, we show that Ti > 2α ≥ T0. In (23) we have proved that |r(2α)| ≥ |y|
2 . Since ui(t) ≥ α and

|r(t)| ≥ |r(2α)| for t ≤ 2α, then fi(t) = ui(t)|xir(t)| ≥ α |xiy|
2 . By Assumption 3.3, we have α > 2ε

|xiy| . As a

result, fi(t) > ε for all t ≤ 2α. Therefore, we must have T ′
i > 2α ≥ T0.
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We need to show that the derivative of fi(t) is always non-positive for t ≥ Ti. Using the expression for |r(t)|
in (22), we get

f ′
i(t) = |xi| (u′

i(t)|r(t)|+ ui(t)|r(t)|′)

= |xi|

(
u′
i(t)|r(t)|+ ui(t)

(
−2

Dn∑
k=1

|xk|uk(t)u
′
k(t) + 2

Dn∑
k=1

|xk|vk(t)v′k(t)

))
.

Since v′k(t) ≤ 0 for all k, we get

f ′
i(t) ≤ |xi|

(
u′
i(t)|r(t)| − 2ui(t)

Dn∑
k=1

|xk|uk(t)u
′
k(t)

)
. (26)

Next, we want to find a lower bound for 2ui(Ti)
∑Dn

k=1 |xk|uk(Ti)u
′
k(Ti). We denote the index set by I :=

{1, . . . , Dn} that we partition as I = I+
i ∪ I−

i , where I+
i := {k : |xk| ≥ |xi|} and I−

i := {k : |xk| < |xi|}. For
k ∈ I−

i , since |xk| < |xi|, we have uk(t) ≤ ui(t) by Lemma A.2. As a result, uk(t)|xkr(t)| ≤ ui(t)|xir(t)|. In
turn, for all k ∈ I−

i and for all t,

ui(t)u
′
k(t) = ui(t)

uk(t)|xkr(t)|
uk(t)|xkr(t)|+ ε

(27)

≥ ui(t)
uk(t)|xkr(t)|

ui(t)|xir(t)|+ ε
(28)

≥ uk(t)|xk|
|xi|

· ui(t)|xir(t)|
ui(t)|xir(t)|+ ε

(29)

=
|xk|
|xi|

uk(t)u
′
i(t). (30)

For k ∈ I+
i , similarly, we have uk(t) ≥ ui(t) for all t. We also have fk(t) = uk(t)|xkr(t)| ≥ ui(t)|xir(t)| = fi(t).

In turn, u′
k(t) ≥ u′

i(t). Therefore, for all k ∈ I+
i and for all t, we have

ui(t)u
′
k(t) ≥ ui(t)u

′
i(t). (31)

Using (30) and (31), we get

2ui(t)

Dn∑
k=1

|xk|uk(t)u
′
k(t) = 2

∑
k∈I+

i

|xk|uk(t)ui(t)u
′
k(t) + 2

∑
k∈I−

i

|xk|uk(t)ui(t)u
′
k(t)

≥ 2
∑
k∈I+

i

|xk|uk(t)ui(t)u
′
i(t) + 2

∑
k∈I−

i

|xk|
|xi|

· |xk|u2
k(t)u

′
i(t)

= 2u′
i(t)

∑
k∈I+

i

|xk|ui(t)uk(t) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(t)

 .

Because ui(t) is non-decreasing for all i, it follows that for t ≥ Ti,

2u′
i(t)

∑
k∈I+

i

|xk|ui(t)uk(t) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(t)

 ≥ 2u′
i(t)

∑
k∈I+

i

|xk|ui(Ti)uk(Ti) +
∑
k∈I−

i

|xk|
|xi|

|xk|u2
k(Ti)

 .

Moreover, for t ∈ [0, Ti], u
′
i(t) ≥ 1

2 and u′
k(t) ≤ 1. As a result, u′

i(t) ≥ 1
2u

′
k(t). In turn, we have

ui(Ti) ≥ α+
1

2
(uk(Ti)− α) >

1

2
uk(Ti). (32)
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We also know that |xk|
|xi| ≥

minj{|xj |}
|xi| for all k ∈ I−

i , and 1 ≥ minj{|xj |}
|xi| . Using (32), we get

2ui(t)

Dn∑
k=1

|xk|uk(Ti)u
′
k(Ti) ≥ u′

i(t)

∑
k∈I+

i

2|xk|
1

2
uk(Ti)uk(Ti) +

∑
k∈I−

i

2|xk|
|xi|

|xk|u2
k(Ti)

 (33)

= u′
i(t)

∑
k∈I+

i

|xk|u2
k(Ti) +

∑
k∈I−

i

2|xk|
|xi|

|xk|u2
k(Ti)

 (34)

≥ u′
i(t)

∑
k∈I+

i

minj{|xj |}
|xi|

|xk|u2
k(Ti) +

∑
k∈I−

i

minj{|xj |}
|xi|

|xk|u2
k(Ti)

 (35)

= u′
i(t)

minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti). (36)

Next, we consider (26) by using (36). Since |r(t)| is non-increasing, for all t ≥ Ti, we have

f ′
i(t) ≤ |xi|

(
u′
i(t)|r(t)| − u′

i(t)
minj{|xj |}

|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
(37)

≤ |xi|

(
u′
i(t)|r(Ti)| − u′

i(t)
minj{|xj |}

|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
(38)

≤ |xi|u′
i(t)

(
|r(Ti)| −

minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)
. (39)

At t = Ti, we know that ui(Ti) ≥ α and fi(Ti) = ui(Ti)|xir(Ti)| = ε. By Assumption 3.3, we have α > 2ε
|xjy|

for all j. We must have

|r(Ti)| =
fi(t)

ui(t)|xi|
≤ ε

α|xi|
<

ε

|xi|
· minj{|xj |}|y|

2ε
=

1

2

minj{|xj |}
|xi|

|y|, (40)

which implies

|y| −
Dn∑
k=1

|xk|
(
u2
k(Ti)− v2k(Ti)

)
<

1

2

minj{|xj |}
|xi|

|y|.

Thus,
Dn∑
k=1

|xk|u2
k(Ti) ≥

Dn∑
k=1

|xk|
(
u2
k(Ti)− v2k(Ti)

)
>

(
1− 1

2

minj{|xj |}
|xi|

)
|y| ≥ 1

2
|y|. (41)

By using (40) and (41) in (39), we get

f ′
i(t) ≤ |xi|u′

i(t)

(
1

2

minj{|xj |}
|xi|

|y| − minj{|xj |}
|xi|

Dn∑
k=1

|xk|u2
k(Ti)

)

≤ |xi|u′
i(t)

(
1

2

minj{|xj |}
|xi|

|y| − minj{|xj |}
|xi|

1

2
|y|
)

≤ 0.

Hence, for all t ≥ Ti, f
′
i(t) is non-increasing. We conclude that for each i, there exists Ti > T0 such that

f ′
i(t) > ε for t < Ti, and f ′

i(t) ≤ ε for t ≥ Ti.
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Lemma A.3 (Convergence). As t → ∞, for every n we have

lim
t→∞

r(n)(t) = 0,

lim
t→∞

∇wL(w(t)) = 0,

u∞ := lim
t→∞

(u(t)) with u∞
i < ∞ ∀i,

v∞ := lim
t→∞

(v(t)) with v∞i < ∞ ∀i.

Proof. Without loss of generality, we assume r(0) = y > 0. By Lemma 22, r(t) is bounded below by 0 and
monotonically non-increasing in t. Therefore, r(t) converges as t → ∞ by calculus. Let R0 := limt→∞ r(t) ≥ 0.
We want to show that R0 = 0. Suppose for contradiction that R0 > 0. We have r(t) ≥ R0 > 0 for all t ≥ 0.

We first show that u′
k(t) is bounded below by a positive number for all k. Since uk(t) ≥ α and r(t) ≥ R0 for

all t, we have fk(t) = uk(t)|xk|r(t) ≥ α|xk|R0 > 0. Therefore, for all t ≥ 0,

u′
k(t) =

fk(t)

fk(t) + ε
≥ α|xk|R0

α|xk|R0 + ε
> 0.

As a result, uk(t) ≥ α+ t · α|xk|R0

α|xk|R0+ε . Recall that

r(t) = y −
Dn∑
k=1

|xk|
(
u2
k(t)− v2k(t)

)
≤ y −

Dn∑
k=1

|xk|
(
u2
k(t)− α2

)
.

As t → ∞, u2
k(t) → ∞, and the summation

∑Dn

k=1 |xk|u2
k(t) is unbounded. We conclude that r(t) < 0 for suffi-

ciently large t. This contradicts that r(t) ≥ 0 for all t by Lemma A.1. Thus, we must have R0 = limt→∞ r(t) = 0.
The argument holds for all n, so limt→∞ r(n)(t) = 0 for all n = 1, . . . , N . As a result, we have

limt→∞[∇uL(w(t))]i = 0 and limt→∞[∇vL(w(t))]i = 0 for all i. It follows that limt→∞ ∇wL(w(t)) = 0.
Next, we show that the weights converge as t → ∞. Without loss of generality, we suppose r(0) = y > 0.

Because r(t) never changes sign by Lemma A.1, we have 0 ≤ r(t) ≤ y −
∑Dn

k=1 |xk|
(
u2
k(t)− α2

)
. As a result,

uk(t) is upper bounded. Since uk(t) is non-decreasing, we have u∞
k := limt→∞ uk(t) < ∞ by calculus. Using a

similar argument for vk(t) which is non-increasing, v∞k := limt→∞ vk(t) < ∞. The proof holds for all k and all
n. Therefore, u∞ := limt→∞ u(t) exists with u∞

i < ∞ for all i, and v∞ := limt→∞ v(t) exists with v∞i < ∞ for
all i.

B Proof of Results in Section 3.3.2

Using Assumption 3.8, we parameterize the dynamics using θ1 and λ1 with | cos θ1| ≥ | sin θ1| > 0 and λ1 > 0.

We let y := y(1), θ := θ1, λ := λ1 and ỹ := y(1)

√
λ1

to simplify the notation in the proofs. We have

|r(t)| = |ỹ| − | cos θ|
(
u2
1(t)− v21(t)

)
− | sin θ|

(
u2
2(t)− v22(t)

)
,

f1(t) = λu1(t)| cos θr(t)|,
f2(t) = λu2(t)| sin θr(t)|,

u′
1(t) =

f1(t)

f1(t) + ε
, u′

2(t) :=
f2(t)

f2(t) + ε
.

Lemma B.1. We have u′
1(t) ≥ u′

2(t) for t ∈ [0, T ), and u′
1(t) ≥

2| cot θ|
1+| cot θ|u

′
2(t) for t ∈ [T,∞). Quantity T is the

stage transition time as in Proposition 3.7.

Proof. First, we show that for all t ≥ 0,

u′
1(t) ≥

| cot θ| (f2(t) + ε)

| cot θ|f2(t) + ε
u′
2(t). (42)
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Since | cos θ| ≥ | sin θ| > 0 by Assumption 3.8, we have u1(t) ≥ u2(t) by Lemma A.2. As a result,

f1(t) = λu1(t)| cos θr(t)|
= | cot θ|λu1(t)| sin θr(t)|
≥ | cot θ|λu2(t)| sin θr(t)|
= | cot θ|f2(t).

Therefore,

u′
1(t) =

f1(t)

f1(t) + ε
= 1− ε

f1(t) + ε
≥ 1− ε

| cot θ|f2(t) + ε
=

| cot θ|f2(t)
| cot θ|f2(t) + ε

. (43)

When u′
2(t) = 0, (42) holds since u′

1(t) is always non-negative. When u′
2(t) ̸= 0, using (43), we have that (42)

holds:

u′
1(t)

u′
2(t)

=
f1(t)

f1(t) + ε
· f2(t) + ε

f2(t)

≥ | cot θ|f2(t)
| cot θ|f2(t) + ε

· f2(t) + ε

f2(t)

=
| cot θ|(f2(t) + ε)

| cot θ|f2(t) + ε
.

By Proposition 3.7, there exist stage transition times T1, T2 for f1(t) and f2(t), respectively. We know that
f1(t) ≤ ε for t ≥ T1. Since | cos θ| ≥ | sin θ|, f1(t) ≥ f2(t) > ε for t ∈ [0, T2). As a result, we must have T1 ≥ T2.
By definition, T := min{T1, T2} = T2. For all t, | cos θ| ≥ | sin θ| implies u1(t) ≥ u2(t) and f1(t) ≥ f2(t).
Therefore, we conclude u′

1(t) ≥ u′
2(t) for t ∈ [0, T ).

For t ∈ [T,∞), we establish f2(t) ≤ ε. Notice that | cot θ|(f2+ε)
| cot θ|f2+ε = 1 + (| cot θ|−1)ε

| cot θ|f2+ε . Since | cot θ| ≥ 1, the ratio
| cot θ|(f2+ε)
| cot θ|f2+ε is non-increasing in f2 ≥ 0. Using f2(t) ≤ ε, we get

| cot θ|(f2(t) + ε)

| cot θ|f2(t) + ε
≥ | cot θ|(ε+ ε)

| cot θ|ε+ ε
=

2| cot θ|
1 + | cot θ|

.

Using (42), we conclude that for t ∈ [T,∞),

u′
1(t) ≥

| cot θ| (f2(t) + ε)

| cot θ|f2(t) + ε
u′
2(t) ≥

2| cot θ|
1 + | cot θ|

u′
2(t).

Let us consider the cubic equation x
(
A−Bx2

)
= ϵ, where A > 0, B > 0, x > 0. We assume that ϵ ≥ 0 is

small. The largest solution x∗ is approximately

x∗ =

√
A

B
− 1

2A
ϵ− 3

8
B

1
2A− 5

2 ϵ2 +O
(
ϵ3
)
.

This can be established by using elementary perturbation theory.

Lemma B.2. We have

∆ := | cos θ| (u∞
2 − u2(0))− | sin θ| (u∞

1 − u1(0)) ≤ M+,

where M+ := (| cos θ| − | sin θ|)
(
λ− 1

4 |y| 12 −
√
2ε

4λ
1
2 |y|

)
.

Proof. We complete the proof in three steps.
Step 1. We show an upper bound for u2(T ).
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Let us define p(U) := λ| sin θ|U
(
|ỹ|+ (| cos θ|+ | sin θ|)α2 − (| cos θ|+ | sin θ|)U2

)
, which is a cubic function

of U ∈ R. Let Û be the largest solution to p(U) = ε. Let us define f+(t) := (p ◦ u2) (t). We want to show that
f+(t) ≥ f2(t) for t ∈ [0, T ]. Indeed, since u1(t) ≥ u2(t), v1(t), v2(t) ≤ α always hold, we have

f+(t) = λ| sin θ|u2(t)
(
|ỹ|+ (| cos θ|+ | sin θ|)α2 − (| cos θ|+ | sin θ|)u2

2(t)
)

≥ λ| sin θ|u2(t)
(
|ỹ|+ | cos θ|v21(t) + | sin θ|v22(t)− | cos θ|u2

1(t)− | sin θ|u2
2(t)

)
= f2(t).

We know that f2(T ) = ε, so f+(t) = p(u2(T )) ≥ ε. Meanwhile, p(Û) = ε. We want to show that u2(T ) ≤ Û .
Suppose for contradiction that u2(T ) > Û . By studying the behavior of the cubic function p(U), we observe that
p(U) < 0 for sufficiently large U . Since p(u2(T )) ≥ ε, by continuity, there exists U ′ ≥ u2(T ) such that p(U ′) = ε.
However, U ′ ≥ u2(T ) > Û , which contradicts that Û is the largest solution to p(U) = ε. Thus, u2(T ) ≤ Û . By

using the expansion of the cubic root Û in ε, it is easy to show that Û < ũ2 :=
√

|ỹ|
| cos θ|+| sin θ| + α2 − ε

2λ| sin θỹ|
under Assumption 3.3. As a result,

u2(T ) ≤ Û < ũ2 :=

√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − ε

2λ| sin θỹ|
. (44)

Step 2. We show that u1(T )− u1(0) ≥ u2(T )− u2(0) and u∞
1 − u1(T ) ≥ 2| cot θ|

1+| cot θ| (u
∞
2 − u2(T )).

For all t, we know that u′
1(t) ≥ u′

2(t). By integrating both sides with respect to t from 0 to T , we get

u1(T )− u1(0) ≥ u2(T )− u2(0). (45)

For t ≥ T , by Lemma B.1 we have u′
1(t) ≥

2| cot θ|
1+| cot θ|u

′
2(t). Again by integrating both sides, we get

u∞
1 − u1(T ) ≥

2| cot θ|
1 + | cot θ|

(u∞
2 − u2(T )) . (46)

Step 3. We derive an upper bound for ∆.
We can write ∆ = ∆1 +∆2, where

∆1 := | cos θ|(u2(T )− u2(0))− | sin θ|(u1(T )− u1(0)),

∆2 := | cos θ|(u∞
2 − u2(T ))− | sin θ|(u∞

1 − u1(T )).

Using (45) and (46) from Step 2, we get

∆1 ≤ (| cos θ| − | sin θ|)(u2(T )− u2(0)), (47)

∆2 ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − u2(T )) . (48)

Adding (48) and (47), we get

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − u2(T )) + (| cos θ| − | sin θ|) (u2(T )− u2(0))

=

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − ũ2)

+

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(ũ2 − u2(T )) + (| cos θ| − | sin θ|)(u2(T )− ũ2)

+ (| cos θ| − | sin θ|)(ũ2 − u2(0)).

We have shown that ũ2 ≥ u2(T ) in (44), and | cos θ| ≥ | sin θ| implies | cos θ|−| sin θ| ≥ | cos θ|−| sin θ| 2| cot θ|
1+| cot θ| ≥ 0.

As a result, (
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(ũ2 − u2(T )) ≤ (| cos θ| − | sin θ|) (ũ2 − u2(T ))(

| cos θ| − | sin θ| 2| cot θ|
1 + | cot θ|

)
(ũ2 − u2(T )) + (| cos θ| − | sin θ|)(u2(T )− ũ2) ≤ 0.
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Therefore,

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
(u∞

2 − ũ2) + (| cos θ| − | sin θ|)(ũ2 − u2(0)). (49)

Moreover, by Lemma A.3, we know that the residual converges to zero. It follows that limt→∞ r(t) = 0, and

|ỹ| = | cos θ|
(
(u∞

1 )2 − (v∞1 )2
)
+ | sin θ|

(
(u∞

2 )2 − (v∞2 )2
)
.

Because u1(t) ≥ u2(t) and v1(t), v2(t) ≤ α always hold, it follows that u∞
2 ≤

√
|ỹ|

| cos θ|+| sin θ| + α2. Using ũ2 from

(44), we get u∞
2 − ũ2 ≤ ε

2λ| sin θỹ| . Continuing with (49) and using u2(0) = α, we get

∆ ≤
(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|

)
ε

2λ| sin θỹ|

+(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − ε

2λ| sin θỹ|
− u2(0)

)

=(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − u2(0)

)

+

(
| cos θ| − | sin θ| 2| cot θ|

1 + | cot θ|
− | cos θ|+ | sin θ|

)
ε

2λ| sin θỹ|

=(| cos θ| − | sin θ|)

(√
|ỹ|

| cos θ|+ | sin θ|
+ α2 − α

)
−
(
| cos θ| − | sin θ|
| cos θ|+ | sin θ|

)
ε

2λ|ỹ|

≤ (| cos θ| − | sin θ|)

√
|ỹ|

| cos θ|+ | sin θ|
−
(
| cos θ| − | sin θ|
| cos θ|+ | sin θ|

)
ε

2λ|ỹ|

≤ (| cos θ| − | sin θ|)
√

|ỹ| − (| cos θ| − | sin θ|)
√
2ε

4λ|ỹ|

=(| cos θ| − | sin θ|)

(
|y| 12λ− 1

4 −
√
2ε

4λ
1
2 |y|

)
=M+.

We conclude ∆ ≤ M+.

Lemma B.3. We have

∆ := | cos θ| (u∞
2 − u2(0))− | sin θ| (u∞

1 − u1(0)) ≥ M−,

where M− := (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2
√

2ε

λ
3
4 | sin θ||y|

1
2
− 3

√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y|

3
2√

2ε

)
.

Proof. We begin by exhibiting a lower bounding function for f2(t) for t ∈ [0, T ]. Let v̄ := | cos θ| (v∞1 )
2
+

| sin θ| (v∞2 )
2
. Since v1(t), v2(t) are non-increasing and non-negative, we have

0 ≤ v̄ ≤ | cos θ|v21(t) + | sin θ|v22(t) ≤ (| cos θ|+ | sin θ|)α2. (50)

Let us define

f−(t) :=
1

2
λ| sin θ| (α+ t)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
)
.
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For t ≤ T , since f2(t) ≥ ε and u′
2(t) ≥ 1

2 , we have u2(t) ≥ α + 1
2 t >

1
2 (α+ t). Moreover, u1(t) ≤ α + t and

u2(t) ≤ α+ t always hold. Therefore, for t ∈ [0, T ], we establish that

f−(t) =
1

2
λ| sin θ| (α+ t)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
)

< λ| sin θ|u2(t)
(
|ỹ|+ v̄ − | cos θ|u2

1(t)− | sin θ|u2
2(t)

)
≤ λ| sin θ|u2(t)

(
|ỹ| − | cos θ|

(
u2
1(t)− v22(t)

)
− | sin θ|

(
u2
2(t)− v22(t)

))
= f2(t).

As a result, we get
f−(T ) < f2(T ) = ε. (51)

Assumption 3.3 guarantees
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α > 0. The derivative of the cubic function f−(t) shows that

f−(t) is increasing on
[
0,
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α

)
and decreasing for t >

√
|ỹ|+v̄

3(| cos θ|+| sin θ|) −α. Because f−(0) > ε

by Assumption 3.3 and f−(T ) < ε by (51), it follows that there exists a unique T ′ ∈
(√

|ỹ|+v̄
3(| cos θ|+| sin θ|) − α, T

)
such that f−(T

′) = ε, and f−(t) < ε for t > T ′.

Next, we show a lower bound for α+ T ′. Since we already have α+ T ′ >
√

|ỹ|+v̄
3(| cos θ|+| sin θ|) , then

ε = f−(T
′) =

1

2
λ| sin θ| (α+ T ′)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2
)

≥ 1

2
λ| sin θ|

√
|ỹ|+ v̄

3 (| cos θ|+ | sin θ|)

(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2
)
.

Therefore, we have

2ε

λ| sin θ|

√
3(| cos θ|+ | sin θ|)

|ỹ|+ v̄
≥ |ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)

2
(52)

(| cos θ|+ | sin θ|) (α+ T ′)
2 ≥ |ỹ|+ v̄ − 2ε

λ| sin θ|

√
3(| cos θ|+ | sin θ|)

|ỹ|+ v̄
(53)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 2ε

λ| sin θ|

√
3

(|ỹ|+ v̄)(| cos θ|+ | sin θ|)
(54)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
3ε

λ| sin θ|(|ỹ|+ v̄)
1
2

(55)

(α+ T ′)2 ≥ |ỹ|+ v̄

| cos θ|+ | sin θ|
− 4ε

λ| sin θ|(|ỹ|+ v̄)
1
2

(56)

α+ T ′ ≥
(

|ỹ|+ v̄

| cos θ|+ | sin θ|
− 4ε

λ| sin θ|(|ỹ|+ v̄)
1
2

) 1
2

(57)

α+ T ′ ≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ|(|ỹ|+ v̄)
1
2

. (58)

Next, we want to find a lower bound for u2(T ). Because u2(t) is non-decreasing, T > T ′ implies u2(T ) ≥
u2(T

′). For all t ∈ [0, T ′], f−(t) ≤ f2(t) holds, and therefore

u′
2(t) =

f2(t)

f2(t) + ε

≥ f−(t)

f−(t) + ε

= 1− 2ε

λ| sin θ| (α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) .
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This lower bounding function is explicit in t, which makes it possible to obtain a lower bound for u2(T
′) by

integrating it with respect to t from 0 to T ′, which yields

u2(T
′)− u2(0) ≥

∫ T ′

0

1− 2ε

λ| sin θ| (α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) dt (59)

u2(T
′) ≥ α+ T ′ − 2ε

λ| sin θ|

∫ T ′

0

1

(α+ t)
(
|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ t)

2
) dt. (60)

Let τ := α+ t. We compute the integral

J :=

∫ α+T ′

α

1

τ(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)τ2)
dτ =

1

2(|ỹ|+ v̄)
ln

τ2

|ỹ|+ v̄ − (| cos θ|+ | sin θ|)τ2

∣∣∣∣α+T ′

α

=
1

2(|ỹ|+ v̄)
ln

(α+ T ′)2(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)α2)

α2(|ỹ|+ v̄ − (| cos θ|+ | sin θ|)(α+ T ′)2)
.

Since f−(T
′) = ε, we get

|ỹ|+ v̄ − (| cos θ|+ | sin θ|) (α+ T ′)
2
=

2ε

λ| sin θ|(α+ T ′)
.

Moreover, (α+ T ′)
2 ≤ |ỹ|+ v̄. Using v̄ ≤ (| cos θ|+ | sin θ|)α2 from (50) and Assumption 3.3, we get

J ≤ 1

2|(ỹ|+ v̄)
ln

(α+ T ′)
3

2ε/(λ| sin θ|)
|ỹ|
α2

≤ 1

2(|ỹ|+ v̄)
ln

(|ỹ|+ v̄)
3
2

2ε/(λ| sin θ|)
|ỹ|

(2ε/(λ| sin θỹ|))2

=
1

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

3
2

(
λ| sin θỹ|

2ε

)3
)

=
3

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

1
2

(
λ| sin θỹ|

2ε

))
.

Using Assumption 3.3, we obtain that

|ỹ|+ v̄ ≤ |ỹ|+ (| cos θ|+ | sin θ|)α2 ≤ |ỹ|+ 1

18
|ỹ| = 19

18
|ỹ|.

In turn we have

J ≤ 3

2(|ỹ|+ v̄)
ln

(
(|ỹ|+ v̄)

1
2

(
λ| sin θỹ|

2ε

))
≤ 3

2(|ỹ|+ v̄)
ln

((
19

18
|ỹ|
) 1

2
(
λ| sin θỹ|

2ε

))

≤ 3

2(|ỹ|+ v̄)
ln

(√
2|ỹ| 12

(
λ| sin θỹ|

2ε

))
=

3

2(|ỹ|+ v̄)
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Assumption 3.3 implies that ε ≤ λ| sin θ||ỹ|
3
2

9
√

2(| cos θ|+| sin θ|)
. Therefore, ln

(
λ| sin θ||ỹ|

3
2√

2ε

)
is guaranteed to be positive, and

we get

J ≤ 3

2|ỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
. (61)
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Combining (58), (60) and (61), we get

u2(T
′) ≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ|(|ỹ|+ v̄)
1
2

− 3ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)

≥

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− 2

√
ε

λ| sin θ||ỹ| 12
− 3ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Let P :=
√

|ỹ|+v̄
| cos θ|+| sin θ| , Q := 2

√
ε

λ| sin θ||ỹ|
1
2
+ 3ε

λ| sin θỹ| ln

(
λ| sin θ||ỹ|

3
2√

2ε

)
, and P,Q > 0. Therefore, we have

u2(T
′) ≥ P −Q. Using Lemma A.3, we obtain that

| cos θ| (P +Q)
2
+ | sin θ| (P −Q)

2
= (| cos θ|+ | sin θ|)P 2 + 2PQ(| cos θ| − | sin θ|) + (| cos θ|+ | sin θ|)Q2

≥ (| cos θ|+ | sin θ|)P 2

= |ỹ|+ v̄

= |ỹ|+ | cos θ| (v∞1 )
2
+ | sin θ| (v∞2 )

2

= | cos θ| (u∞
1 )

2
+ | sin θ| (u∞

2 )
2
.

Since u2(t) is non-decreasing, we get u∞
2 ≥ u2(T

′) ≥ P −Q. As a result, we must have u∞
1 ≤ P +Q. We derive

| cos θ|u∞
2 − | sin θ|u∞

1 ≥ (| cos θ| − | sin θ|)P − (| cos θ|+ | sin θ|)Q (62)

= (| cos θ| − | sin θ|)

√
|ỹ|+ v̄

| cos θ|+ | sin θ|
− (| cos θ|+ | sin θ|)Q (63)

≥ (| cos θ| − | sin θ|)

√
|ỹ|

| cos θ|+ | sin θ|
−
√
2Q (64)

≥ (| cos θ| − | sin θ|)

√
|ỹ|√
2
−
√
2Q. (65)

Additionally, we have u1(0) = u2(0) = α, which implies

−| cos θ|u2(0) + | sin θ|u1(0) = −α(| cos θ| − | sin θ|). (66)

Adding (65) and (66), and substituting in Q, we get

∆ = | cos θ|(u∞
2 − u2(0))− | sin θ|(u∞

1 − u1(0))

= | cos θ|u∞
2 − | sin θ|u∞

1 − α(| cos θ| − | sin θ|)

≥ (| cos θ| − | sin θ|)

(√
|ỹ|√
2
− α

)
− 2

√
2ε

λ| sin θ||ỹ| 12
− 3

√
2ε

λ| sin θỹ|
ln

(
λ| sin θ||ỹ| 32√

2ε

)
.

Finally, using ỹ = λ− 1
2 y, we get

∆ ≥ (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2

√
2ε

λ
3
4 | sin θ||y| 12

− 3
√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y| 32√

2ε

)
= M−.

Therefore, ∆ ≥ M−.

Lemma B.4. Let us consider M−(ε) as a function of ε with M−(0) := limε→0+ M−(ε). We have M−(0) > 0

and M−(ε) is strictly decreasing for 0 ≤ ε ≤ 1
9

λ| sin θ||ỹ|
3
2√

2(| cos θ|+| sin θ|)
.

23



Proof. We write M−(ε) = N0 +N1(ε) +N2(ε), where

N0 = (| cos θ| − | sin θ|)
(
2−

1
4

√
|ỹ| − α

)
,

N1(ε) = −2

√
2ε

λ| sin θ||ỹ| 12
,

N2(ε) = − 3
√
2ε

λ| sin θỹ|
ln

(
|ỹ| 12 λ| sin θỹ|√

2ε

)
.

Notice that N0 does not depend on ε, and N1(ε) is decreasing in ε for all ε ≥ 0. If ε′ :=
√
2ε

λ| sin θỹ| , then

N2(ε
′) = −3ε′ ln

(
|ỹ| 12
ε′

)
,

dN2(ε
′)

dε′
= −3

(
ln

(
|ỹ| 12
ε′

)
− 1

)
.

Since 0 ≤ ε ≤ 1
9

λ| sin θ||ỹ|
3
2√

2(| cos θ|+| sin θ|)
, we have 0 ≤ ε′ ≤ 1

9
|ỹ|

1
2√

| cos θ|+| sin θ|
. As a result,

|ỹ| 12
ε′

≥ 9
√

| cos θ|+ | sin θ| ≥ 9 > e.

Therefore, ln

(
|ỹ|

1
2

ε′

)
> 1 and dN2(ε

′)
dε′ < 0. It follows that N2(ε) is decreasing in ε on the given interval.

Combining N0, N1 and N2, we conclude that M−(ε) is decreasing in ε on the given interval. We obtain

limε′→0+ ε′ ln( |ỹ|
1
2

ε′ ) = 0 using L’Hopital’s rule, so limε→0+ N2(ε) = 0. Applying Assumption 3.3 yields

M−(0) = (| cos θ| − | sin θ|)
(
2−

1
4

√
|ỹ| − α

)
> 0.

B.1 Proof of Theorem 3.9

Proof. By Lemma A.3, we know that the weights converge and the residual r(t) converges to zero. It follows
that β∞ := limt→∞ β(t) exists and is finite. Using (19), we get

0 = lim
t→∞

r(t) = y −
(√

λ cos θβ∞
1 +

√
λ sin θβ∞

2

)
= y −Xβ∞.

Therefore, the convergent solution β∞ is an interpolating solution.
Next, we derive the stationary condition for the optimization problem (15) as

∇β (Xβ∞) =

[√
λ cos θ√
λ sin θ

]
, (67)

∇βE (β∞) = ∇Φ∞ (β∞)−∇Φ0 (β(0)) . (68)

The gradient in the left-hand side of (68) is equal to the difference between the convergent point and the starting
point of the dual variable. We use the result of the dual dynamics in Proposition 3.6 to calculate the gradient.
Recall that the dual dynamics follow

d∇Φt(β(t))

dt
= − sgn(β(t))⊙ ∇uL(w(t))

|∇uL(w(t))|+ ε
.
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From (18) we note that sgn(βi(t)) = sgn(xiy). Therefore, sgn(β(t)) remains the same for all t. Integrating both
sides with respect to t from 0 to infinity, it follows that

∇Φ∞(β∞)−∇Φ0(β(0)) =

[
sgn(cos θỹ)
sgn(sin θỹ)

]
⊙ (u∞ − u(0)) .

Next, we want to compute the extent of the deviation from the exact KKT point. To this end, we have

δ := min
ν∈R

∥∇βE (β)− ν · ∇β(Xβ)∥ = min
ν∈R

∥∥∥∥[sgn(cos θỹ)sgn(sin θỹ)

]
⊙ (u∞ − u(0))− ν ·

[√
λ cos θ√
λ sin θ

]∥∥∥∥ .
Let V :=

[
sgn(cos θỹ) (u∞

1 − u1(0))
sgn(sin θỹ) (u∞

2 − u2(0))

]
. Using orthogonal projection, we derive that

min
ν∈R

∥∥∥∥V − ν ·
[√

λ cos θ√
λ sin θ

]∥∥∥∥ =

∣∣∣∣〈V, [− sin θ
cos θ

]〉∣∣∣∣
=
∣∣∣− sgn(cos θỹ) sin θ (u∞

1 − u1(0)) + sgn(sin θỹ) cos θ (u∞
2 − u2(0))

∣∣∣
=
∣∣∣ sgn(sin θ cos θỹ) · (−| sin θ| (u∞

1 − u1(0)) + | cos θ| (u∞
2 − u2(0)))

∣∣∣
=
∣∣∣| cos θ| (u∞

2 − u2(0))− | sin θ| (u∞
1 − u1(0))

∣∣∣.
Therefore, δ = |∆|, where ∆ := | cos θ| (u∞

2 − u2(0))− | sin θ| (u∞
1 − u1(0)). Using Lemma B.2 and Lemma B.3,

we get

M− ≤ ∆ ≤ M+,

where

M− := (| cos θ| − | sin θ|)
(
(2λ)

− 1
4 |y| 12 − α

)
− 2

√
2ε

λ
3
4 | sin θ||y| 12

− 3
√
2ε

λ
1
2 | sin θy|

ln

(
λ

1
4 | sin θ||y| 32√

2ε

)
,

M+ := (| cos θ| − | sin θ|)

(
λ− 1

4 |y| 12 −
√
2ε

4λ
1
2 |y|

)
.

We conclude that δ = |∆| ≤ max{|M−|, |M+|}.

B.2 Proof of Corollary 3.10

Proof. Let us consider δ(ε),∆(ε),M−(ε),M+(ε) as functions of ε on the domain Iε = [0, ε̄] implied by Assump-
tion 3.3. We define M−(0) := limε→0+ M−(ε) so that M−(ε) is continuous on the domain. Theorem 3.9 shows
that M+(ε) is linearly decreasing in ε. By Lemma B.4, M−(ε) is strictly decreasing in ε on the domain Iε.
Lemma B.4 also shows that M−(0) > 0. If M−(ε̄) ≥ 0, then ∆(ε) ≥ M−(ε) ≥ M−(ε̄) ≥ 0 for all ε ∈ Iε. It
implies that only M+(ε) applies to the bound, i.e., δ(ε) ≤ M+(ε). Let ε

∗ = ε̄. It follows that for ε ∈ [0, ε∗], we
have

δ(ε) ≤ M̄ − (| cos θ| − | sin θ|)
√
2ε

4λ
1
2 |y|

. (69)

If M−(ε̄) < 0, since M−(0) > 0, the monotonicity of M−(ε) ensures a unique ε̂ ∈ (0, ε̄) such that M−(ε̂) = 0 and
∆(ε) ≥ M−(ε) ≥ 0 for ε ∈ [0, ε̂]. Let ε∗ = ε̂. Notice that ε̂ is positive, so [0, ε∗] is non-degenerate. By a similar
argument, we establish (69). We complete the proof by setting I ′ := [0, ε∗] ⊆ Iε.

B.3 Proof of Corollary 3.11

Proof. By Lemma A.3, limt→∞ r(n)(t) = 0 for all n ∈ {1, . . . , N} and the weights converge. We let β̄(n) :=
limt→∞ β(n)(t), ū(n) := limt→∞ u(n)(t) and v̄(n) := limt→∞ v(n)(t) for each n. We also let β∞ := limt→∞ β(t) =[
β̄(1) . . . β̄(n)

]⊤
. Using (19), we derive that for all n

0 = lim
t→∞

r(n)(t) = y(n) − x
(n)
1 β̄

(n)
1 − x

(n)
2 β̄

(n)
2 .
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Therefore, Xβ∞ = y, i.e., β∞ is an interpolating solution.
Each block of X⊤X is parameterized by θn and λn as

B(n) =

[
cos θn − sin θn
sin θn cos θn

] [
λn 0
0 0

] [
cos θn sin θn
− sin θn cos θn

]
,

where | cos θn| ≥ | sin θn| > 0. Matrix B(n) is positive semi-definite and has rank 1, so λn > 0. We let ỹ(n) := y(n)

√
λn

.

The constraint Xβ∞ = y consists of N equality conditions〈
x(1), β∞

〉
= y(1),

. . .〈
x(N), β∞

〉
= y(N).

By integrating both sides of (14), we get

∇βE (β∞) = ∇Φ∞ (β∞)−∇Φ0 (β(0))

=



sgn(cos θ1ỹ
(1))

(
ū
(1)
1 − u

(1)
1 (0)

)
sgn(sin θ1ỹ

(1))
(
ū
(1)
2 − u

(1)
2 (0)

)
. . .

sgn(cos θN ỹ(N))
(
ū
(N)
1 − u

(N)
1 (0)

)
sgn(sin θN ỹ(N))

(
ū
(N)
2 − u

(N)
2 (0)

)


.

We let µ :=
[
µ1 . . . µN

]
, and then we have

δ̄ := min
µ∈RN

∥∥∥∥∥∇βE (β∞)−
N∑

n=1

µnx
(n)

∥∥∥∥∥
= min

µ∈RN

∥∥∥∥∥∥∥∥∥∥
∇βE (β∞)−


µ1

√
λ1 cos θ1

µ1

√
λ1 sin θ1
. . .

µN

√
λN cos θN

µN

√
λN sin θN


∥∥∥∥∥∥∥∥∥∥

= min
µ∈RN

 N∑
n=1

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥
2


1
2

≤
N∑

n=1

min
µn∈R

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥ .
By Theorem 3.9, it follows that for each n,

δn := min
µn∈R

∥∥∥∥∥∥
sgn(cos θnỹ(n))(ū(n)

1 − u
(n)
1 (0)

)
sgn(sin θnỹ

(n))
(
ū
(n)
2 − u

(n)
2 (0)

)− µn ·
[√

λn cos θn√
λn sin θn

]∥∥∥∥∥∥
≤ max

{∣∣∣M (n)
+

∣∣∣, ∣∣∣M (n)
−

∣∣∣} .

Therefore, δ̄ ≤
∑N

n=1 δn ≤
∑N

n=1 max
{∣∣∣M (n)

+

∣∣∣, ∣∣∣M (n)
−

∣∣∣}.
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B.4 Proof of Corollary 3.12

Proof. For each n ∈ {1, . . . , N}, we apply Corollary 3.10 and show that there exists a non-degenerate interval
I ′
n = [0, ε∗n] such that for all ε ∈ I ′

n, we have

δn(ε) ≤ (| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
− (| cos θn| − | sin θn|)

√
2ε

4λ
1
2
n |y(n)|

. (70)

We let ε̃ := minn{ε∗n} and let J :=
⋂N

n=1 I ′
n = [0, ε̃]. Since each I ′

n is non-degenerate, we have ε∗n > 0 for all
n and ε̃ > 0. Therefore, the interval J is non-degenerate. In turn, for all ε ∈ J , the relation (70) holds. By
Corollary 3.11, we have

δ̄(ε) ≤
N∑

n=1

δn(ε) ≤
N∑

n=1

(| cos θn| − | sin θn|)
(
λ
− 1

4
n |y(n)| 12

)
−

(
N∑

n=1

(| cos θn| − | sin θn|)
√
2

4λ
1
2
n |y(n)|

)
ε.

C Derivation of Dual Dynamics for Gradient Descent

When applying GD to minimize loss (7) with respect to weights, in the continuous-time limit we have

dw+(t)

dt
= −w+(t)⊙X⊤(Xβ(t)− y) (71)

dw−(t)

dt
= w−(t)⊙X⊤(Xβ(t)− y). (72)

With initialization w+(0) = w−(0) = α1, we write implicit solutions to (71) and (72) as

w+(t) = α exp

(
−
∫ t

0

X⊤(Xβ(s)− y) ds

)
w−(t) = α exp

(∫ t

0

X⊤(Xβ(s)− y) ds

)
.

Therefore, we have

β(t) = w+(t)⊙w+(t)−w−(t)⊙w−(t)

= α2

[
exp

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
− exp

(
2

∫ t

0

X⊤(Xβ(s)− y) ds

)]
= 2α2 sinh

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
.

It follows that

1

2α2
β(t) = sinh

(
−2

∫ t

0

X⊤(Xβ(s)− y) ds

)
arcsinh

(
β(t)

2α2

)
= −

∫ t

0

2X⊤(Xβ(s)− y) ds

d arcsinh
(

β(t)
2α2

)
dt

= −2X⊤(Xβ(t)− y).

We note that ∇βL(β(t)) =
1
2X

⊤(Xβ(t)− y). In turn, we have

d arcsinh
(

β(t)
2α2

)
dt

= −2X⊤(Xβ(t)− y) = −4∇βL(β(t)). (73)
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Given the potential function Ψα(β(t)) =
1
4

(∑D
i=1 βi arcsinh(

βi

2α2 ) +
√
β2
i + 4α4

)
, we have the mirror map

∇Ψα(β(t)) =
1

4
arcsinh

(
β(t)

2α2

)
. (74)

Combining (73) and (74), we get the dual dynamics for GD

d∇Ψα(β(t))

dt
= −∇βL(β(t)).
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