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1. Introduction

We study the following problem. A controller continuously monitors inventories for a finite

set of items I. An item may represent a product, a location, or a product-location pair. The

inventory of each item i ∈ I is infinitely divisible, is consumed at a constant deterministic

rate of 0 < λi < ∞, and costs the firm 0 ≤ hi < ∞ per unit per time to hold. It also

cannot exceed a maximum allowable inventory level of 0 < X i ≤ ∞. For each item i, to

avoid degenerate cases, we assume that either hi > 0 or X i < ∞ (or both). As inventories

continuously deplete, the controller may at any time replenish a subset I ⊆ I of items, which

incurs an ordering cost of 0 < CI < ∞ and is completed instantaneously. Without loss of

generality, we assume CI1 ≤ CI2 if I1 ⊆ I2, since otherwise the controller can replenish I1 by

executing I2 without replenishing items I2\I1. Although we can accommodate different item

sizes, we assume for simplicity that all demands and inventories are measured in the same

units, e.g. liters, and that no more than 0 < A ≤ ∞ total units can be replenished across all

items in a single replenishment. The controller’s problem is to minimize the long-run time

average cost, subject to allowing no stockouts. We call this problem the generalized joint

replenishment problem.

We provide a new formulation of the generalized joint replenishment problem as a semi-

Markov decision process on continuous spaces, which extends the model of Adelman [2003] to

include holding costs. We prove the existence of an optimal stationary, deterministic policy.

This existence question is stated in Federgruen and Zheng [1992] as an open problem. We

also give the following two new results with respect to cyclic schedules: (1) an example
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showing that cyclic schedules need not be optimal, and (2) cyclic schedules are ε-optimal for

every ε > 0. The full version of this document appears in Adelman and Klabjan [2005]. We

omit most proofs since they can be found in this manuscript.

We resolve the existence question using the powerful and elegant machinery of infinite

linear programming duality, Anderson and Nash [1987]. Using this approach, we can accomo-

date constraints on replenishment quantities, which are essential in real-world applications

such as inventory routing. We formulate the underlying problem as an infinite dimensional

linear program. This program seeks a measurable bounded function subject to uncountably

many constraints and an objective function. The dual of this linear program is a linear

program having variables correspond to finite measures. Among other results, we show solv-

ability and strong duality of these two linear programs. Our duality results are important

not only because they lead to a resolution of the existence question. They also provide,

at least theoretically, a way to verify whether a given policy, or cyclic schedule, is optimal.

Such a certificate of optimality has been missing in the inventory literature, and is essential if

optimal control policies are ever to be identified. Whereas previous models in the literature

yield bounds on optimal cost, our models are the first to provide the exact optimal cost.

Having a complete duality theory will enable future researchers to not only better under-

stand problems in this arena, but also to create brand new classes of math programming

solution algorithms to solve them.

In Section 2 we formulate the generalized joint replenishment problem as a semi-Markov

decision process. The existence result is stated in Section 3. Section 4 presents the results

about cyclic schedules.

2. Semi-Markov Decision Formulation

We start by formally stating the generalized joint replenishment problem. Suppose quantity

ai is replenished of item i when its inventory level is xi. We assign all future holding cost that

results to the current replenishment. Consequently, the inventory holding cost associated

with xi is sunk, because it is assigned to the previous replenishments. The delivery of ai moves

the inventory level to xi + ai and incurs additional holding cost. The newly accumulated

holding cost is (ai+xi)
2

2λi
− x2

i

2λi
, or (1/2λi)(a

2
i + 2aixi). Therefore, for every (x, a) ∈ R|I| × R|I|
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the cost of replenishment vector a is the sum of fixed ordering costs and holding costs, i.e.

c(x, a) = Csupp(a) +
∑
i∈I

hi

2λi

(2aixi + a2
i ) , (1)

where we denote by supp(a) the support set of a.

The problem is to find an infinite sequence of replenishments {(xn, an, tn)}n=0,1,..., where

xn and an denote the vectors of item inventory levels and replenishment quantities respec-

tively, at decision epoch n, and tn represents the elapsed time between replenishments n and

n + 1. The notation xi,n and ai,n denotes the inventory level and replenishment quantity,

respectively, of item i on replenishment n. Given a fixed initial inventory state x0 = x, the

control problem can be formulated as

J∗(x) = inf lim sup
N→∞

∑N
n=0 c(xn, an)∑N

n=0 tn
(2a)

xn+1 = xn + an − λtn n ∈ Z+ (2b)

xn + an ≤ X n ∈ Z+ (2c)∑
i∈I

ai,n ≤ A n ∈ Z+ (2d)

x0 = x (2e)

x, a, t ≥ 0, (2f)

where Z+ = {0, 1, . . . } and λ = (λ1, . . . , λ|I|). Constraints (2b) maintain inventory flow

balance, constraints (2c) ensure that the storage limits X i are not violated, and constraints

(2d) ensure that no replenishment delivers more than A in total across all items. The

objective function minimizes the lim sup of the long-run time average cost.

3. Existence of Optimal Policies

The central existence result of this paper is the following theorem.

Theorem 1. There exists a function f(·) and a constant J∗ such that for all initial feasible

inventory states x0 = x, the infimum in (2a) equals J∗(x) = J∗ and an optimal sequence

{(x∗n, a∗n, t∗n)}n=0,1,... that attains J∗ is given by

a∗n = f(x∗n),

t∗n = min
i∈I

{
x∗i,n + a∗i,n

λi

}
, and (3)

x∗n+1 = x∗n + a∗n − λt∗n
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for all n ∈ Z+.

The proof of this result uses linear programming duality on infinite-dimensional Borel

spaces. A primal/dual pair of linear programs are formulated. Next it is shown that both

of them are solvable and that there is no duality gap. By using complementary slackness an

optimal deterministic stationary policy, i.e. of the form (3), is constructed.

4. Results on Cyclic Schedules

For ease of notation let τ(x, a) = mini∈I

{
xi+ai

λi

}
and s(x, a) = x + a− λτ(x, a). If currently

the observed inventory is x and a replenishment a is used, then the next replenishment will

occur τ(x, a) time units from now and the inventory level is going to be s(x, a).

Definition 1. A sequence {(xn, an)}n=0,...,N−1 of N < ∞ of steps is called a cyclic schedule

if

xn =

{
s(xN−1, aN−1) for n = 0
s(xn−1, an−1) for n = 1, . . . , N − 1.

Cyclic schedules might not be optimal as shown by the following example.

Proposition 1. All cyclic schedules are suboptimal for the following instances:

I = {1, 2}, λ1 = λ2 = 1, C{1} = C{2} = 1, C{12} = 2, h1 = h2 = 0, one of X1 and X2 is

rational and the other is irrational, A = ∞.

Proof. An optimal policy manages the two items independently because C{1} + C{2} = 2 ≤
C{12}, i.e. there is no economic incentive to replenish items together. Hence, the optimal

policy replenishes quantity X i of item i whenever it stocks out. Now suppose there exists an

optimal cyclic schedule, and (x, 0) (or (0, x)) is some state on it. Then there exists a cycle

length T < ∞ such that state (x, 0) (or (0, x)) is revisited. Hence, by flow balance (2b), there

must exist n1, n2 ∈ N such that x + n1X1 − T = x, which implies T = n1X1 and similarly

T = n2X2. However, if one of X1 and X2 is rational and the other irrational, then n1X1 =

n2X2 equates an irrational number with a rational number, which is a contradiction.

The same scenerio can occur even when all of the input data are rational. For instance,

consider h1 = 1, h2 = 2, and X1 = X2 = ∞. Then, as before, it is optimal to manage the

items indepedently, but in this case each item follows the classical economic order quantity,

which equals quantity
√

2 for item 1 and quantity 1 for item 2. Because the former is
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irrational and the later is rational, the same argument holds, so that there does not exist an

optimal cyclic schedule.

On a positive note, cyclic schedules can approximate optimal policies arbitrarily close.

Cyclic schedules are said to be ε-optimal if for every ε > 0 there exists a cyclic schedule

{(xn, an)}n=0,...,N−1 such that ∑N−1
n=0 c(xn, an)∑N−1
n=0 τ(xn, an)

− J∗ ≤ ε,

i.e. they can get ε close to any optimal policy. Here J∗ is the value of the optimal policy.

Theorem 2. Cyclic schedules are ε-optimal.
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