
A Sequential Optimal Learning Approach
to Automated Prompt Engineering in Large Language Models

Shuyang Wang1 Somayeh Moazeni2 Diego Klabjan3

1Department of Engineering Sciences and Applied Mathematics, Northwestern University
2School of Business, Stevens Institute of Technology

3Department of Industrial Engineering and Management Sciences, Northwestern University

Abstract
Designing effective prompts is essential to guiding large lan-
guage models (LLMs) toward desired responses. Automated
prompt engineering aims to reduce reliance on manual ef-
forts by streamlining the design, refinement, and optimiza-
tion of natural language prompts. This paper proposes an op-
timal learning framework for automated prompt engineering
for black-box models, designed to sequentially identify ef-
fective prompt features while efficiently allocating a limited
evaluation budget. We introduce a feature-based method to
express prompt templates, which significantly broadens the
search space. Bayesian regression is employed to utilize cor-
relations among similar prompts, accelerating the learning
process. To efficiently explore the large space of prompt
features for a high quality prompt, we adopt the forward-
looking Knowledge-Gradient (KG) policy for sequential opti-
mal learning. The KG policy is computed efficiently by solv-
ing mixed-integer second-order cone optimization problems,
making it scalable and capable of accommodating prompts
characterized only through constraints. We demonstrate that
our method significantly outperforms a set of benchmark
strategies assessed on instruction induction tasks. The results
highlight the advantages of using the KG policy for prompt
learning given a limited evaluation budget. Our framework
provides a solution to deploying automated prompt engineer-
ing in a wider range of applications where prompt evaluation
is costly.

Key Words: automated prompt engineering, optimal
learning, Knowledge-Gradient, Bayesian regression, feature-
based prompts

1 Introduction
Large Language Models (LLMs) demonstrate exceptional ca-
pabilities in following instructions, making them a power-
ful tool to various downstream tasks [31, 20, 2, 30]. A
well-designed prompt steers an LLM to generate desired re-
sponses, enabling effective adaptation to downstream appli-
cations without incurring the high cost of fine-tuning the

model weights. Nevertheless, creating effective prompts can
be challenging due to the sensitivity of LLM outputs to
prompt variations [32, 21, 38]. In addition, manually iden-
tifying ideal prompts is often time-consuming and lacks sys-
tematic guidance. Automated approaches to designing, opti-
mizing, and refining LLM prompts mitigate this challenge by
minimizing the need for manual intervention.

Recent efforts in automated prompt engineering have pri-
marily focused on iterative evaluation and refinement in or-
der to converge to ideal prompts [12, 39, 28, 27, 35]. The
methods by these studies often assume the availability of nu-
merous iterations. However, in many real-world scenarios,
opportunities to evaluate prompts are limited, as each prompt
evaluation can be costly or time-consuming. For example, in
medical research, each prompt evaluation could involve ex-
tensive time and resources from medical professionals, mak-
ing it impractical to test a large number of variations before
selecting the final one.

Moreover, many existing approaches search over a set of
precrafted candidate prompts for ideal prompts [33, 39, 22].
These methods require identifying and enumerating a set of
prompts, which restricts the scalability as the candidate set
expands. Furthermore, it fails to utilize the correlation among
similar prompts to expedite learning.

To fully unlock the potential of LLMs across diverse sce-
narios, it is crucial to develop an automated prompting frame-
work that is compatible with black-box LLMs and is capa-
ble of capturing dependencies among prompts and efficiently
identifying high-performing prompts within few evaluations.
This paper presents a principled forward-looking iterative
process for automated prompt engineering through the opti-
mal design of a sequence of prompts.

We propose an interpretable feature-based approach to
prompt representation. Various categorical or numerical fea-
tures can be considered to characterize detailed aspects of a
prompt, such as the selection and ordering of demonstrative
examples. Previous works identify factors within a prompt
that influence the LLM outputs but often treat these aspects in
isolation. We allow for capturing various interactions among
prompt attributes and can accommodate potential constraints

1



on the features. This feature-based prompt representation en-
ables the inclusion and exploration of a vast and diverse set of
prompts, which does not require manual prompt provision. In
addition, in contrast to prompt descriptions based on embed-
ding vectors, our representation is inherently interpretable.

We adopt a Bayesian approach to refine beliefs about the
influence of prompt features on the LLM response. This ap-
proach supports the integration of prior knowledge and user
opinions as well as enabling to capture feature correlations.
To operationalize this, we define a probabilistic model to link
prompt features to a response quality of interest. In this paper,
we demonstrate our approach using LLM response accuracy
as the primary evaluation metric.

We formalize the iterative process of automated prompt
engineering for black-box LLMs in the presence of limita-
tions on the number of prompt evaluations as a sequential
decision-making problem. Given limited opportunities for
prompt evaluation, this problem falls into the category of
finite-horizon discrete-time Markov decision processes; see
[29]. An optimal learning policy sequentially selects a feasi-
ble prompt representation for evaluation, aiming to maximize
the expected outcome of the final prompt. Due to the poten-
tially large prompt feature space, the curse of dimensional-
ity [25] hinders the exact computation of the optimal prompt
selection. We adopt an approximate policy for the optimal
learning problems, known as the expected improvement pol-
icy in [4, 5] or Knowledge-Gradient (KG) policy in [9, 26].
This is a forward-looking policy that maximizes the expected
improvement in the value of information in each learning
phase. The KG policy often excels in practical scenarios with
limited evaluation budgets, frequently outperforming com-
mon static data acquisition strategies and dynamic test-and-
learn policies.

The large space of prompt candidates, defined by con-
strained features, makes it impractical to enumerate all fea-
sible alternatives for determining KG decisions. To address
this challenge, we leverage recent advancements in scalable
optimal learning and KG computation. In contrast to ear-
lier results to compute KG decisions [9] based on enumera-
tion of all feasible alternatives, recent computational methods
[24, 14, 6] build on optimal quantization of the response prob-
ability followed by mixed-integer conic optimization refor-
mulations to leverage efficient optimization solution methods.
For optimal learning problems with larger feature spaces, an
iterative process involving solving mixed-integer linear opti-
mization problems is employed to achieve even greater com-
putational efficiency and scalability.

Our black-box framework allows for different prompt
representations and selection policies, hence encompassing
various existing methods for automated prompt engineering.
For example, when a small, finite set of precrafted prompt
templates is provided and a point-wise utility model is used,
our setting encompasses the setup in [22, 39, 33].

We assess the performance of sequential prompt learn-

ing with adaptive prompt selection policies on a variety of
instances of instruction induction tasks [15]. This bench-
mark dataset contains 24 instances of instruction induction,
designed for LLMs to deduce implicit tasks or instructions
from language prompts including answers or contextual in-
formation. For the instruction induction tasks, we first pro-
pose a feature-based prompt template and use the accuracy
of responses collected from GPT-3.5 on the validation data
as the primary performance metric. For the prompt selec-
tion, we evaluate the KG policy, the adaptive myopic pol-
icy, the increasingly popular Thompson sampling policy, and
a number of other automated prompt engineering methods
such as EvoPrompt [12] using an evolutionary algorithm to
refine prompts and TRIPLE [33] using a multi-armed bandit
approach to select prompts.

Our analyses show the effectiveness of our approach with
the KG prompt selection policy, which is capable to converge
to high-quality prompts within 30 or fewer prompt evalua-
tions. These prompts significantly outperform those gener-
ated by the benchmarks on the test data using the same num-
ber of LLM interactions. A further analysis reveals that the
KG policy is particularly favorable for challenging tasks with
high uncertainty in LLM responses and significant sensitivity
to prompts, achieving a substantial margin over baseline poli-
cies. Our findings highlight the advantages of using the KG
policy in prompt engineering to selectively evaluate prompts,
expanding the potential for deploying automated prompt en-
gineering in applications with large prompt evaluation costs.

Our contributions can be summarized as follows.

• We introduce a sequential optimal learning framework
for automated prompt engineering to guide through the
process of designing a sequence of prompts that effec-
tively elicit accurate responses from an LLM. The ap-
proach is compatible with black-box LLMs and is par-
ticularly effective for applications where prompt eval-
uation is resource-intensive.

• We propose a feature-based approach to represent lan-
guage prompts, which greatly expands the prompt
search space. A link function maps the features to
LLM response accuracy through Bayesian model pa-
rameters to leverage correlations among prompts with
shared characteristics. Our method enables simultane-
ous optimization of multiple features to generate im-
proved prompts.

• We leverage the KG policy within our sequential
prompt learning to efficiently identify high-performing
prompts in large prompt spaces. The KG policy outper-
forms various benchmark policies, especially for chal-
lenging tasks with high uncertainty in LLM response.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related literature. Section 3 discusses the

2



generic iterative process for automated prompt learning, for-
malizing the problem as a sequential decision making prob-
lem. Section 4 discusses the forward-looking KG policy for
prompt selection in iterative automated prompting. Illustra-
tive examples and computational results are provided in Sec-
tions 5 and 6. Finally, conclusions and potential extensions
are discussed in Section 7.

2 Related Work

Generation-then-selection Methods [39] present a two-
phase pipeline of instruction generation and selection. This
method generates a set of candidate instructions, which are
evaluated and filtered based on their performance on the
downstream tasks until the best one from the candidate set
is found. [22] uses an optimal control paradigm to system-
atize the process of iteratively updating and selecting from a
set of candidate prompts. However, these approaches are lim-
ited to search spaces represented by precomputed individual
prompt candidates. Our proposed framework encompasses
different prompt representations generated dynamically and
exploration policies. Our feature-based approach to represent
prompts captures their dependencies and enables a diverse
search space. [33] follows the two-phase pipeline with a fo-
cus on prompt selection subject to a fixed evaluation budget.
They formulate the selection as a multi-armed bandit (MAB)
problem and utilize the continuously reject method to select
from the candidate set. Their solution requires an increasing
number of evaluations as the size of the prompt candidate set
grows. In contrast, our framework with the KG prompt selec-
tion policy can accommodate larger spaces of prompts within
limited evaluations.

Edit-based Methods An approach to automated prompting
focuses on generating refined prompts by iteratively editing
base prompts. [27] propose GrIPS, which iteratively applies
text-based edit operations, such as word substitutions and
deletions, to a base prompt. The best candidate is then se-
lected as the new base prompt. Alternatively, [12] apply evo-
lutionary algorithms and generate new candidate prompts by
performing mutation and crossover operations using an LLM,
retaining high-quality prompts for the next generation. [8]
also use an LLM to perform mutation operations on a popu-
lation of prompts but employ a self-referential way of improv-
ing both the prompts and the mutation operations. [16] pro-
pose an iterative prompt refinement scheme specially crafted
for relevance ranking in information retrieval. While these at-
tempts show the potential of edit-based approaches for gener-
ating high-quality prompts, they mainly rely on local search
by modifying existing prompts. Our method, however, ex-
plores the prompt space in a forward-looking principled man-
ner using Bayesian optimal learning, and utilizes knowledge
from prior observations to inform future prompt selections.

Prompt Learning Methods Recent works [3, 19] explore
Bayesian Optimization to search in the embedding space of
prompts, but white-box LLMs are required to facilitate the
optimization steps. Our approach also builds on Bayesian
learning, but we directly search in the space of discrete
prompts and eliminate the need for white-box LLMs. The
concept of prompt learning is also used in [23], which trains
a reinforcement learning model to select tokens as actions to
form prompts. The training stage requires sufficient evalua-
tion budget, while our framework is capable of learning from
only a limited number of prompt evaluation.

Gradient-based Methods Gradient-based algorithms have
been used to solve the problem of optimizing prompt perfor-
mance over the prompt space. [35, 34] model prompts as se-
quences of trigger tokens, and compute the gradients of the
log-likelihood of the language model generating the target
outputs with respect to the embeddings of candidate tokens
to guide the search for optimal tokens. [36] compute the gra-
dients of a similarity metric between the generated and tar-
get outputs with respect to the prompt embeddings to guide
prompt optimization, and project the optimized embeddings
to discrete prompts using nearest neighbors. These methods
require access to the internal parameters of the LLM, making
them incompatible with black-box LLMs. Moreover, these
methods require computationally intensive gradient compu-
tations. In contrast, our approach generates human-readable
prompts without accessing internal parameters.

3 Sequential Optimal Prompt Learning

We introduce a sequential optimal prompt learning frame-
work, called SOPL, for automated prompt engineering that
is compatible with black-box LLMs and generates human-
readable prompts, while addressing the challenge of limited
number of iterations for prompt evaluation. Our framework,
depicted in Figure 1, follows the iterative process outlined
in Algorithm 1. The components of the framework are ex-
plained in the subsequent subsections.

3.1 Feature-Based Prompt Representation

To identify high-quality prompts, it is essential to explore a
diverse set of prompts tailored to the specific downstream
task. We adopt a feature-based representation for prompts,
expressing a language meta prompt through various features
that capture its content and structure. Prompt features are de-
noted by vector x that specifies a textual prompt based on the
meta prompt. Examples of such features include the struc-
tural template, tone, role, context, demonstrations, specificity,
complexity, embeddings, task type, question framing, con-
straints, and temporal references. These features are gener-
ally either manually engineered by the user or derived from

3



Figure 1: SOPL: Sequential optimal prompt learning for automated prompt engineering

Algorithm 1 Sequential optimal prompt learning
Require Maximum iteration N , score function Eval : X →
(0, 1), prompt representation selection policy π : S → X ,
Bayesian update function Update : S × R → S that imple-
ments (4)-(7).

1: Initialize knowledge state S.
2: Initialize best prompt so far x∗.
3: Initialize best score so far u∗ ← −1.
4: for step n = 1, ..., N do
5: Get prompt representation x← π(S).
6: Evaluate prompt and get a score ux ← Eval(x).
7: if ux > u∗ then
8: Record best score so far u∗ ← ux.
9: Record best prompt so far x∗ ← x.

10: end if
11: Update knowledge state S ← Update(S, logit(ux)).
12: end for
13: return x∗.

established prompt templates in the literature corresponding
to the task. Refer to Section 5.1 for the specific features and
categories utilized in the instruction induction task for our ex-
periments, developed based on the template proposed in [15].

Previous studies have primarily examined each feature in
isolation, whereas we integrate these features in the prompt
representation to leverage the potential synergies that emerge
from their combination. By enriching the meta prompt with
multiple features known to influence LLM responses, we ex-
pand the search space.

In general, a feature space may contain variables of differ-
ent types: continuous, categorical, and ordinal. In addition,
various requirements may be imposed on the features either
by definition or by the user’s preferences to account for mu-
tually exclusive features, conditional features, combined ef-

fects of multiple features, disjunctive features, and multiple-
choice decisions. The set of feasible feature combinations
forms a diverse and potentially large search space, denoted
by X . Our framework does not require explicitly identify-
ing and enumerating all feasible prompts. We assume, in-
stead, that the feasible prompt space X , which encompasses
the feasible values of the prompt features, is specified solely
by linear inequality or equality constraints.

Our framework encompasses existing approaches as spe-
cial cases. For example, the methods [39, 33, 22] that follow
the pipeline of generating and selecting from a set of candi-
dates can be thought of as using the candidate set as X .

3.2 Prompt Evaluation
The prompt evaluation phase involves querying a black-box
LLM with the prompt constructed from x and collecting the
LLM’s response. When evaluating the prompt on the down-
stream task, we measure the quality of the observed LLM re-
sponse to the prompt associated with x using a numeric score
ux, which is computed from the score function Eval defined
onX ; see Algorithm 2 for details on Eval(x). If given labeled
data, the score can be computed by comparing the LLM re-
sponses to the ground truth labels and calculating the percent-
age of accurate responses. For downstream tasks that require
human evaluation, the score is based on human feedback.

For common metrics such as accuracy, F1-score, and
point-wise mutual information [1], the score lies in the in-
terval between 0 and 1. We assume that

ηx := logit(ux) = Θ⊤x+ ϵ, (1)

where Θ ∼ N (µΘ,ΣΘ/ρ) is the D-dimensional model pa-
rameter and ϵ ∼ N (0, 1/ρ) with variance 1/ρ is the measure-
ment noise. The quantity ηx represents the utility of x. The
mean µΘ and the precision ρ are the unknown parameters to

4



estimate. For general score functions that return values be-
yond the interval between 0 and 1, alternative link functions
can be employed in (1) in place of the logit function.

3.3 Knowledge State Update
An approach to addressing uncertainty in the effectiveness of
prompt features is Bayesian learning. The Bayesian approach
to inference can account for multiple levels of randomness
and correlation by using prior distributions for model param-
eters. Additionally, existing knowledge and user input can
be incorporated into these prior probability distributions. We
adopt the Bayesian framework, letting a multivariate normal
prior for the coefficients, µΘ, and a Gamma prior for the pre-
cision, ρ, i.e.,

µΘ|ρ ∼ N (θ,Σ/ρ) (2)
ρ ∼ Gamma(a, b). (3)

The belief represented by S = (θ,Σ, a, b) is referred to
as the knowledge state. The knowledge state encodes prior
observations of prompt performance and serves as the basis
to inform future decisions. The multivariate distribution (2)
captures dependencies among unknown parameters, implying
that learning about one prompt can provide insights into the
effectiveness of several other prompts, thereby enhancing the
learning speed.

We iteratively update the knowledge state based on ob-
served responses to queried prompts. At iteration n, the
knowledge state is denoted by Sn = (θn,Σn, an, bn), and
the selected prompt representation is denoted by xn. After
the n-th iteration of prompt evaluation, we observe the score
un := uxn and update the knowledge state as follows.

θn+1 = θn +
logit(un)− θ⊤n xn

(1 + x⊤
t (Σn +ΣΘ)xn)

Σnxn (4)

Σn+1 = Σn −
Σnxnx

⊤
nΣn

1 + x⊤
n (Σn +ΣΘ)xn

(5)

an+1 = an +
1

2
(6)

bn+1 = bn +
(logit(un)− θ⊤n xn)

2

2(1 + x⊤
n (Σn +ΣΘ)xn)

(7)

Matrix ΣΘ is the covariance matrix of the model param-
eter Θ as in (1). Equations (4)-(7) collectively define the
mapping Update(S, logit(x)) appearing in line 11 of Algo-
rithm 1.

3.4 Prompt Representation Selection Policy
For each iteration, a prompt representation xn is selected ac-
cording to a policy π. The goal is to find a prompt that maxi-
mizes the score on the downstream task after N iterations of
prompt evaluation.

Our framework allows for different prompt representation
selection policies to explore the feasible prompt space X and
update the knowledge state. Heuristic policies, such as adap-
tive myopic (Greedy) and Thompson sampling (TS), can be
adopted. The Greedy policy selects the best prompt represen-
tation x based on the current knowledge state by

πGreedy(Sn) := argmax
x∈X

E[ηx|Sn] = argmax
x∈X

θ⊤n x. (8)

The TS policy samples from the posteriors of the parameters
by

ρ̂ ∼ Gamma(an, bn), θ̂ ∼ N (θn,Σn/ρ̂) , (9)

and then selects the prompt representation x by

πTS(Sn) := argmax
x∈X

θ̂⊤x. (10)

The heuristic policies such as Greedy and TS policies are
adaptive, but they are not forward-looking, in the sense that
they do not explicitly take into account the effect of selected
prompts on the subsequent prompt selections and the overall
learning process.

The prompt representation selection policy π is a key
building block influencing the performance of the SOPL
framework. When the number of iterations is limited to N ,
the process of sequential optimal prompt learning can be for-
mulated as a finite-horizon Markov decision process, where
the action spaceX consists of prompt representations, and the
state space S consists of knowledge states. In the next sec-
tion, we discuss an approximate policy for the optimal prompt
representation selection policy.

4 KG Prompt Selection Policy

We consider a forward-looking optimal learning policy de-
signed to maximize the expected improvement in an approx-
imated value of information during each iteration. This ap-
proach, known as the Knowledge-Gradient (KG) policy, of-
fers an approximate solution to the MDP for prompt se-
lection. For additional discussion and analysis, refer to
[13, 5, 11, 26]. The value of information is measured by the
expected single-period improvement, i.e., the difference be-
tween the values of the knowledge states Sn+1 and Sn if the
prompt representation xn+1 = x is selected. For KG, we as-
sume that x is binary. Hence, at iteration n, the following KG
quantity is maximized:

νnx := E [VN (Sn+1)|Sn, x]− VN (Sn). (11)

where VN (S) is the value of the optimal policy at iteration N
for any knowledge state S, i.e., VN (S) = maxx∈X E[ηx|S],
where ηx is based on (1). Recall that Sn+1 is the transition
from state Sn induced by the updating procedure in (4)-(7).
The quantity νnx is the marginal value of one more prompt

5



representation x being queried. Its value is always nonnega-
tive.

The decision of the KG policy selects the prompt repre-
sentation that maximizes the KG quantity in (11):

πKG(Sn) := argmax
x∈X

νnx . (12)

For discussion on the related concepts of asymptotic optimal-
ity and statistical consistency of the KG policy, the reader is
referred to [11, 10] when X is specified in the enumerative
form, and see [14] when X is represented in a constraint-
based form.

For any x ∈ X , the KG quantity corresponding to
model (1) is given by

νnx = E[max
y∈X

(pny + qny (x)T2an
)|Sn]−max

y∈X
pny (13)

where T2an follows a student’s t distribution with 2an degrees
of freedom, and

pny = θ⊤y (14)

qny (x) =

√
bn

an(1 + x⊤(Σn +ΣΘ)x)
x⊤Σny (15)

The expectation in (13) is with respect to the one-dimensional
random variable T2an

.
The first term in the KG quantity in (13) can be approxi-

mated by

J∑
j=1

wj max
y∈X

(pny + qny (x)tj) (16)

where t1, ..., tJ ∈ R is the sequence of points that minimizes
the quadratic quantization error of the Voronoi quantizer for
T2an . If t0 = −∞, and tJ+1 =∞, the weights are defined as
wj = FT2an

(
tj+tj+1

2

)
−FT2an

(
tj−1+tj

2

)
for j = 1, · · · , J .

Here, FT2an
is the cumulative distribution function of T2an .

Therefore, the selected prompt representation based on the
KG policy at state Sn is computed by solving the following
mixed-integer optimization problem:

max
(x̂,τ)∈X+,τ≤M,x,y1,...,yJ∈X

J∑
j=1

wjθ
⊤
n y

j + τ (17)

s.t. ∥P 1/2
n x̂∥2 ≤

J∑
j=1

wjtjx
⊤Σny

j (18)

τ · 1m −M(1m − x) ≤ x̂ ≤Mx. (19)

Here, m is the dimensionality of the prompt representa-
tion features, and Pn := an

bn
(A

⊤A
h⊤h

+ Σn + ΣΘ), where
A and h form the equality constraints of the feasible set
X = {x|Ax = h,Bx ≤ g, x binary}. We assume that

(B, g) define all of the facets of conv(x) and thus (A, h) is
the affine hull of conv(x). We assume that conv(x) is not
full-dimensional (otherwise we introduce an artificial feature
x̄ with constraint x̄ = 1). In this problem, X+, consisting
of elements (x, τ) ∈ Rm, represents the homogenized ver-
sion of the set X . In the last constraint, M denotes a large
constant. For further details and a computationally efficient
iterative algorithm only involving solving mixed-integer pro-
gramming problems to solve this problem, see Propositions 6
and 7 in [24].

5 Computational Experiments

We demonstrate the performance of the proposed SOPL
framework on the instruction induction tasks [15]. The
dataset consists of 24 individual tasks, covering various
aspects of text comprehension. Each data point com-
prises a pair of input and output. For example, for the
task larger animal, one data point consists of an input
“cougar, flea” and an output “cougar.” The objective is to
find an instruction such that when the LLM is queried with
the instruction and an input, its response matches the correct
output. A possible instruction for this task can be “choose
the larger animal.” Similar to [39], we generate possible in-
structions by prompting an LLM using a meta prompt, which
consists of demonstrative examples of input-output pairs and
asks for a possible instruction. For each task, we partition the
dataset into three sets: a demonstration dataset, a validation
dataset, and a held-out test dataset.

Feature-Based Prompt Representation. We focus on five
aspects of prompts that have been shown to impact LLM re-
sponses. [39] note that the template of the meta prompt im-
pacts the effectiveness of the induced prompts; [21, 38] find
that both the selection and the order of demonstration exam-
ples influence generated texts; [37, 17] show that specifying
different roles elicits diverse text generations from LLMs;
[7, 39] discover that prompts paraphrased by LLMs yield im-
proved performance on downstream tasks; [18] observe that
LLMs respond differently to different descriptions of tones.

We create a set of choices for each feature, summarized
in Table 1. A feature vector x specifies one choice for each
feature. By applying one-hot encoding to represent each cat-
egorical feature, the prompt representation feature x becomes
a binary vector. All combinations of the prompt features, sub-
ject to the constraint that exactly one choice is selected for
each feature, form the search space X .

Prompt Evaluation. We evaluate the selected feature vec-
tor x on the validation data and obtain the validation score
ux by Algorithm 2. We first convert the feature vector x to
a textual instruction in lines 1 and 2. For example, if the

6



Feature Choices

Meta prompt template 4 meta prompt templates shown in Figure 2.
Demonstrative examples 20 choices, each consists of 5 examples sampled from the

used in meta prompts demonstration dataset.
Roles (Scientist, research assistant), (Professor, PhD student), (Mom, kid),

(Programmer, AI system), (Manager, employee), (I, friend),
(Director, actor), (Coach, athlete), (Chef, sous chef).

Paraphrasing Binary: if paraphrasing is used, we prompt the LLM again to
generate a variant of the instruction using the template in Figure 3.

Description (empty), clear, detailed, simple, complex, precise, ambiguous,
technical, expository, conceptual, authoritative, friendly, formal,
informal, encouraging, stern, rude, assertive, humorous.

Table 1: Prompt features used for instruction induction tasks

Algorithm 2 Score function Eval(x)

Require An LLM, validation data {(pi, qi)}Vi=1, meta
prompt construction function MetaPrompt, eval-
uation prompt construction function EvalPrompt,
metric function Metric to evaluate LLM re-
sponse.

1: Create meta prompt Mx ← MetaPrompt(x).
2: Generate instruction Ix ← LLM(Mx).
3: for i = 1, ..., V do
4: Get evaluation prompt Ei ← EvalPrompt(Ix, pi).
5: Receive LLM response Ri ← LLM(Ei).
6: Evaluate LLM response Ui ← Metric(Ri, qi).
7: end for
8: Compute the average score ux = 1

V

∑V
i=1 Ui.

9: return ux.

feature vector specifies meta prompt template 1, 5 demon-
strative examples, roles of I and friend, no paraphrasing,
and description of clear, then we create a meta prompt by
MetaPrompt(x), which inserts the 5 demonstrative exam-
ples in meta prompt template 1 in Figure 2, and replaces
[ROLE1] by “I,” [ROLE2] by “friend,” and [DESCRIPTION]
by “clear.” We query an LLM with the meta prompt to gen-
erate an instruction Ix that reflects the selected features. For
each input pi in the validation data, we create an evaluation
prompt by EvalPrompt(Ix, pi), which combines the instruc-
tion and the input using the template in Figure 4. The prompt
is then used to query the LLM. A task-specific metric, such as
exact match or F1-score defined in [15], is used to compute
a score by comparing the LLM’s response with the correct
output qi. The average score across all validation examples is
used as the score ux.

5.1 Benchmark Methods
We compare our method with two benchmarks EvoPrompt
[12] and TRIPLE [33]. Both methods provide solutions com-
patible with black-box access to LLMs and generate human-
readable prompts, and are the two best performing algorithms
with these two properties as reported by prior works. Evo-
Prompt uses the differential evolution algorithm to iteratively
refine a population of prompts. TRIPLE employs the contin-
uously reject algorithm to identify an effective prompt from
a candidate pool under a fixed budget. In addition, we use
Greedy and TS presented in (8) and (10) as the baseline poli-
cies.

5.2 Implementation Details
We record the instruction with the highest validation score
during the process. When the maximum number of prompt
evaluation is reached, the instruction with the highest valida-
tion score is used as the final instruction. The test score is
obtained by evaluating the final instruction on the held-out
test data, using a similar procedure to the one in Algorithm 2.
The held-out test dataset for each task consists of 100 exam-
ples unless fewer are available in the dataset [15].

We repeat the experiment for 20 replications with differ-
ent random seeds. For each replication, we randomly select
10 examples from the rest of the data as the demonstration
dataset, and then randomly select 100 examples or all remain-
ing examples if fewer are available as the validation dataset.
The test dataset is kept the same for all replications.

We use OpenAI GPT-3.5 as the LLM for both generating
and evaluating instructions. We allow N = 30 opportunities
to evaluate on the entire validation dataset since there is no
further learning after this. We set the population size to be
10 for EvoPrompt as in [12], and set the size of the candidate
pool to be 30 for TRIPLE as in [33]. We ensure that the same
number of API calls to the LLM is used for evaluating on the
validation data across all methods.

7



(a) Meta Prompt Template 1 (b) Meta Prompt Template 2

(c) Meta Prompt Template 3 (d) Meta Prompt Template 4

Figure 2: Meta Prompt Templates

Figure 3: Paraphrasing Template

Figure 4: Evaluation Template

6 Results and Sensitivity Analysis

We focus on the 13 challenging tasks where the validation
scores are below 80% with relatively large variance using the
default meta prompt template in [15]. Table 2 presents the
average test performance across 13 tasks for SOPL and the
benchmark approaches. For each task, we evaluate the final
instruction on the held-out test data and compute the accu-
racy of LLM responses as the test score. We illustrate the
mean and standard deviation of the test scores across 20 repli-
cations in Figure 5. The results indicate that SOPL-KG out-
performs the benchmarks. It exhibits the highest average test
score of 0.6281 among all methods, with a 5.60% improve-
ment in average test score and a 9.13% average improvement

per task relative to SOPL-TS, the second best one. In compar-
ison to the best prior algorithm, EvoPrompt, SOPL-KG has a
6.47% improvement in average test score and a 17.92% av-
erage improvement per task. For each task, we rank the five
methods from the highest to the lowest test score, and calcu-
late the average ranking across 13 tasks. SOPL-KG achieves
the highest average ranking of 1.85, and SOPL-TS has the
second best ranking of 2.69, outperforming both EvoPrompt
and TRIPLE. We compute the standard deviation of the test
scores across 20 replications for each task, and report the av-
erage across 13 tasks in Table 2. SOPL-KG exhibits the low-
est standard deviation, demonstrating its robustness to varia-
tions in random seeds.

The findings highlight the effectiveness of our proposed
framework with feature-based prompt representations and the
KG prompt selection policy in comparison to other bench-
marks. Although the space of all feature combinations is pro-
hibitively large for exhaustive exploration, SOPL-KG is capa-
ble of discovering high-quality prompts within given prompt
evaluations.

6.1 Sensitivity to the Number of Iterations

We consider more challenging scenarios with fewer iterations
of N = 20 and N = 10. Table 3 presents the average
test performance across 13 tasks. SOPL-KG outperforms all
other methods within fewer iterations, with a slightly lower
average test score of 0.6174 when N = 20 compared to
N = 30. SOPL-KG also has the lowest standard deviation
when N = 20, while SOPL-TS is slightly more robust to

8



Metric SOPL-KG EvoPrompt TRIPLE SOPL-TS SOPL-Greedy

Test score 0.6281 0.5900 0.5609 0.5948 0.5750
Standard deviation 0.0668 0.0881 0.0966 0.0880 0.0959
Improvement of SOPL-KG 0.00% 6.47% 11.99% 5.60% 9.23%
Improvement of SOPL-KG per task 0.00% 17.92% 17.19% 9.13% 14.35%
Ranking 1.85 2.92 3.77 2.69 3.69

Table 2: Average test performance across 13 tasks for different methods

Figure 5: Test performance on 13 tasks for different methods. The height of each bar represents the average test score and the
error bar represents the standard deviation across 20 replications with different random seeds

Method N = 20 N = 10
Mean STD Mean STD

EvoPrompt 0.5776 0.0956 0.5625 0.0920
TRIPLE 0.5561 0.0996 0.5333 0.1087
SOPL-KG 0.6174 0.0771 0.5800 0.0935
SOPL-TS 0.5926 0.0845 0.5696 0.0893
SOPL-Greedy 0.5757 0.0941 0.5490 0.1012

Table 3: Average test score after fewer iterations

variations in random seeds when N = 10. Moreover, SOPL-
KG achieves the largest improvement of 8.30% when N in-
creases from 10 to 30, while TRIPLE achieves the second
largest improvement of 5.17%.

We implement an early stopping mechanism in our frame-
work to further reduce the cost of prompt evaluation. We
terminate the process early if the best validation score does
not improve for τ consecutive steps, or when the maximum
number of steps N is reached. We conduct experiments with
τ = 5 and τ = 10 for 20 replications and report the results
in Table 4. Within 17 realized iterations, all three prompt
selection policies yield close to but slightly worse test score
compared to N = 30. TS has a small advantage in the av-

Policy τ = 10 τ = 5
Test score Steps Test score Steps

SOPL-KG 0.6060 16.88 0.5711 8.45
SOPL-TS 0.5813 16.10 0.5488 8.20
SOPL-Greedy 0.5653 16.60 0.5389 8.37

Table 4: Average number of realized iterations and average
test score for different policies with early stopping

erage number of steps used, but KG dominates the test score
relative to baseline policies, demonstrating its potential for
reducing the number of evaluations required without signifi-
cantly compromising performance. Figure 6 depicts the trend
of the test score for different values of N used in our exper-
iments above. It shows that the algorithms discover prompts
with better performance as the number of prompt evaluations
increases. SOPL-KG consistently outperforms other meth-
ods for different values of N , with SOPL-TS achieving the
second highest scores.

9



Figure 6: Average test score versus the number of iterations

6.2 Sensitivity to the Prompt Selection Policy

As Figure 5 illustrates, the advantage of the KG policy is
more evident for some tasks while more subtle for others. For
each task, we randomly sample 100 feature vectors and eval-
uate their validation scores. We compute the mean µ100 and
the standard deviation σ100 of the 100 scores, and calculate
the coefficient of variation by CV100 := σ100/µ100. This
metric aims to represent the uncertainty in the LLM response
performance as the prompt feature values vary. Figure 7 de-
picts the relationship between the relative improvement of the
KG prompt representation selection policy over the TS and
Greedy policies in the average test score, and the coefficient
of variation CV100 for different tasks. The correlation coef-
ficient between CV100 and the relative improvement of KG
over TS and Greedy across the 13 tasks are ρ1 = 0.8901
and ρ2 = 0.7789. The positive correlations suggest that for
tasks where the LLM response is highly sensitive to prompt
features, the KG policy can prominently outperform TS and
Greedy in the SOPL framework.

We also observed that for easier tasks when the LLM re-
sponse is relatively insensitive to the prompts and the perfor-
mance function is relatively flat with respect to prompt fea-
tures, full exploitation policies such as Greedy are adequate
to identify an effective prompt. In particular, we observe that
Greedy outperforms KG by a very small margin for two eas-
ier tasks, antonyms and informal to formal. How-
ever, for challenging tasks with high uncertainty, KG consis-
tently yields over a 10% improvement relative to both base-
lines when other parts of the framework remain the same. Our
analysis reveals the importance of the choice of the policy de-
pending on the problem context.

6.3 Sensitivity to Feature Selection

We assess the effectiveness of enriching the prompt rep-
resentation by multiple features on the two tasks with the
largest improvement of SOPL-KG compared to the second

Figure 7: Upper plot: Improvement over SOPL-TS versus
the coefficient of variation. Lower plot: Improvement over
SOPL-Greedy versus the coefficient of variation

best performance, i.e., orthography starts with and
rhymes. We use the default meta prompt from [15], which
only includes the feature for the required demonstration ex-
amples, and use SOPL-KG to select from 20 predefined con-
figurations of demonstration examples. We allow N = 30
evaluations and repeat the experiments for 20 replications.
Figure 8 shows that the performance deteriorates as the fea-
tures that enhance the meta prompt are excluded. While
searching in a single dimension is easier than optimizing mul-
tiple features simultaneously, it results in finding suboptimal
prompts. The result suggests that enriching the meta prompt
with different features effectively expands the search space
and leads to improved performance of the generated prompts.

Figure 8: Comparison of the average test score between our
method using all five features and the method using only one
feature for the demonstrative examples in meta prompts

10



7 Conclusion and Future Work
This paper introduces SOPL, a sequential optimal prompt
learning framework for automated prompt engineering fo-
cused on efficient prompt learning in practical scenarios
where exhaustive evaluation is costly or impossible. Specifi-
cally, we develop a feature-based approach to model prompts,
enabling a constraint-based and expansive prompt search
space. The forward-looking KG policy with correlated be-
liefs facilitates efficient and scalable prompt learning. We
demonstrate that our proposed method achieves superior per-
formance on instruction induction tasks with only 30 or fewer
opportunities of prompt evaluation. We find that the KG pol-
icy yields substantial performance gains compared to base-
line policies, especially for challenging tasks with high uncer-
tainty. Moreover, our framework allows for future investiga-
tion of continuous representations of prompts by embedding
vectors. Our work shows a promising direction of leverag-
ing optimal learning methods for efficient prompt learning,
paving the way for future research on scalable prompt engi-
neering.

Acknowledgment
This research was supported in part through the computa-
tional resources and staff contributions provided for the Quest
high performance computing facility at Northwestern Univer-
sity which is jointly supported by the Office of the Provost,
the Office for Research, and Northwestern University Infor-
mation Technology.

11



References
[1] Gerlof Bouma. Normalized (pointwise) mutual infor-

mation in collocation extraction. Proceedings of the
Conference of German Society for Computational Lin-
guistics and Language Technology, 30:31–40, 2009.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33,
pages 1877–1901, 2020.

[3] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. Instructzero: Efficient instruc-
tion optimization for black-box large language mod-
els. In International Conference on Machine Learning,
2024.

[4] Stephen E Chick. Bayesian ideas and discrete event sim-
ulation: why, what and how. In Proceedings of the 2006
Winter Simulation Conference, pages 96–106, 2006.

[5] Stephen E Chick, Jürgen Branke, and Christian
Schmidt. Sequential sampling to myopically maximize
the expected value of information. INFORMS Journal
on Computing, 22(1):71–80, 2010.

[6] Boris Defourny, Ilya O Ryzhov, and Warren B Pow-
ell. Optimal information blending with measurements
in the l 2 sphere. Mathematics of Operations Research,
40(4):1060–1088, 2015.

[7] Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. Rephrase and respond: Let large language
models ask better questions for themselves. arXiv
preprint arXiv:2311.04205, 2023.

[8] Chrisantha Fernando, Dylan Sunil Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via
prompt evolution. In International Conference on Ma-
chine Learning, 2024.

[9] Peter Frazier, Warren Powell, and Savas Dayanik. The
knowledge-gradient policy for correlated normal be-
liefs. INFORMS Journal on Computing, 21(4):599–
613, 2009.

[10] Peter I Frazier and Warren B Powell. Consistency of
sequential Bayesian sampling policies. SIAM Journal
on Control and Optimization, 49(2):712–731, 2011.

[11] Peter I Frazier, Warren B Powell, and Savas Dayanik.
A knowledge-gradient policy for sequential information
collection. SIAM Journal on Control and Optimization,
47(5):2410–2439, 2008.

[12] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. Connecting large language models with evolu-
tionary algorithms yields powerful prompt optimizers.
In International Conference on Learning Representa-
tions, 2024.

[13] Shanti S Gupta and Klaus J Miescke. Bayesian look
ahead one-stage sampling allocations for selection of
the best population. Journal of Statistical Planning and
Inference, 54(2):229–244, 1996.

[14] Bin Han, Ilya O Ryzhov, and Boris Defourny. Op-
timal learning in linear regression with combinatorial
feature selection. INFORMS Journal on Computing,
28(4):721–735, 2016.

[15] Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. Instruction induction: From few examples
to natural language task descriptions. arXiv preprint
arXiv:2205.10782, 2022.

[16] Can Jin, Hongwu Peng, Shiyu Zhao, Zhenting
Wang, Wujiang Xu, Ligong Han, Jiahui Zhao, Kai
Zhong, Sanguthevar Rajasekaran, and Dimitris N
Metaxas. Apeer: Automatic prompt engineering en-
hances large language model reranking. arXiv preprint
arXiv:2406.14449, 2024.

[17] Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li,
Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xi-
aohang Dong. Better zero-shot reasoning with role-
play prompting. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4099–4113,
2024.

[18] Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. Large language models understand and
can be enhanced by emotional stimuli. arXiv preprint
arXiv:2307.11760, 2023.

[19] Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet,
and Bryan Kian Hsiang Low. Use your INSTINCT: IN-
STruction optimization for LLMs using neural bandits

12



coupled with transformers. In International Conference
on Machine Learning, 2024.

[20] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Comput-
ing Surveys, 55(9):1–35, 2023.

[21] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt
order sensitivity. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 8086–8098, 2022.

[22] Yifan Luo, Yiming Tang, Chengfeng Shen, Zhen-
nan Zhou, and Bin Dong. Prompt engineering
through the lens of optimal control. arXiv preprint
arXiv:2310.14201, 2023.

[23] Deng Mingkai and Wang Jianyu. Rlprompt: Optimiz-
ing discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, 2022.

[24] Somayeh Moazeni, Boris Defourny, and Monika J
Wilczak. Sequential learning in designing marketing
campaigns for market entry. Management Science,
66(9):4226–4245, 2020.

[25] Warren B Powell. Reinforcement learning and stochas-
tic optimization: A unified framework for sequential de-
cisions. John Wiley & Sons, 2022.

[26] Warren B Powell and Ilya O Ryzhov. Optimal learning,
volume 841. John Wiley & Sons, 2012.

[27] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. Grips: Gradient-free, edit-based instruction
search for prompting large language models. arXiv
preprint arXiv:2203.07281, 2022.

[28] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. Automatic prompt op-
timization with “gradient descent” and beam search. In
The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

[29] Martin L Puterman. Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons, 2014.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners. OpenAI Blog,
2019.

[31] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha. A sys-
tematic survey of prompt engineering in large language
models: Techniques and applications. arXiv preprint
arXiv:2402.07927, 2024.

[32] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. Quantifying language models’ sensitivity to spu-
rious features in prompt design or: How I learned to
start worrying about prompt formatting. In Interna-
tional Conference on Learning Representations, 2024.

[33] Chengshuai Shi, Kun Yang, Jing Yang, and Cong Shen.
Best arm identification for prompt learning under a lim-
ited budget. arXiv preprint arXiv:2402.09723, 2024.

[34] Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtz-
man, Yulia Tsvetkov, and Luke Zettlemoyer. Toward
human readable prompt tuning: Kubrick’s the shining
is a good movie, and a good prompt too? In The 2023
Conference on Empirical Methods in Natural Language
Processing, 2023.

[35] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. Autoprompt: Eliciting
knowledge from language models with automatically
generated prompts. arXiv preprint arXiv:2010.15980,
2020.

[36] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Hard prompts
made easy: Gradient-based discrete optimization for
prompt tuning and discovery. Advances in Neural In-
formation Processing Systems, 36, 2024.

[37] Ning Wu, Ming Gong, Linjun Shou, Shining Liang, and
Daxin Jiang. Large language models are diverse role-
players for summarization evaluation. In International
Conference on Natural Language Processing and Chi-
nese Computing, pages 695–707, 2023.

[38] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. Calibrate before use: Improving few-
shot performance of language models. In International
Conference on Machine Learning, pages 12697–12706,
2021.

[39] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engi-
neers. In International Conference on Learning Repre-
sentations, 2023.

13


	Introduction
	Related Work
	Sequential Optimal Prompt Learning
	Feature-Based Prompt Representation
	Prompt Evaluation
	Knowledge State Update
	Prompt Representation Selection Policy

	KG Prompt Selection Policy
	Computational Experiments
	Benchmark Methods
	Implementation Details

	Results and Sensitivity Analysis
	Sensitivity to the Number of Iterations
	Sensitivity to the Prompt Selection Policy
	Sensitivity to Feature Selection

	Conclusion and Future Work

