
Reverse Prompt Engineering

Hanqing Li and Diego Klabjan
Northwestern University
Evanston IL 60208, USA

hanqingli2025@u.northwestern.edu, d-klabjan@northwestern.edu

Abstract

We explore a new language model inver-
sion problem under strict black-box, zero-shot,
and limited data conditions. We propose a
novel training-free framework that reconstructs
prompts using only a limited number of text
outputs from a language model. Existing meth-
ods rely on the availability of a large number
of outputs for both training and inference, an
assumption that is unrealistic in the real world,
and they can sometimes produce garbled text.
In contrast, our approach, which relies on lim-
ited resources, consistently yields coherent and
semantically meaningful prompts. Our frame-
work leverages a large language model together
with an optimization process inspired by the ge-
netic algorithm to effectively recover prompts.
Experimental results on several datasets de-
rived from public sources indicate that our ap-
proach achieves high-quality prompt recovery
and generates prompts more semantically and
functionally aligned with the originals than
current state-of-the-art methods. Additionally,
use-case studies introduced demonstrate the
method’s strong potential for generating high-
quality text data on perturbed prompts.

1 Introduction

With the advancement of large language models
(LLMs), prompt engineering has become an essen-
tial technique for expanding their capabilities (Sa-
hoo et al., 2024). This method uses task-specific in-
structions, or prompts, to enhance model effective-
ness without altering core parameters. Widely used
prompting techniques, such as few-shot prompting
(Radford et al., 2019), chain-of-thought prompting
(Wei et al., 2022), and retrieval-augmented gen-
eration (Lewis et al., 2020), have proven highly
practical in diverse applications.

With the increasing focus on prompt engineer-
ing, where input prompts are carefully modified
to improve the outputs generated by LLMs, a
natural question arises: can we infer the input

prompt based solely on the outputs? This challenge,
termed language model inversion by Morris et al.
(2024), has gained prominence with the growing
prevalence of LLMs offered as “services,” where
users interact only with outputs while the original
prompts remain concealed. This situation presents
a dual interest, with users seeking to deduce con-
cealed prompts and service providers striving to
protect them, thereby rendering language model
inversion an increasingly pertinent problem (Mor-
ris et al., 2024). Furthermore, recovering prompts
has practical applications, such as enabling users to
adapt inferred prompts for generating high-quality
outputs tailored to new contexts, e.g., transforming
a marketing plan for one product into a similarly
high-quality plan for another with minimal adjust-
ments. In Section 4.4, we demonstrate that text
generated through our language model inversion
method is more favored by human evaluators than
text derived from existing high-quality templates.

Morris et al. (2024) develop a model trained to
predict the input prompt by leveraging the prob-
ability distributions and logits from the last layer
of an LLM. Building on this, Zhang et al. (2024)
further propose a model that uses only the textual
outputs to infer the prompts, without relying on
internal model parameters. However, this approach
is developed under the assumption that a large num-
ber of outputs (64) are available to recover a single
prompt and that access to user prompts for com-
plex system prompts is granted. These assumptions
rarely hold true in real-world scenarios. Further-
more, both methods demand extensive training on
large datasets, which can be resource-intensive. Ad-
ditionally, their outputs are heavily influenced by
the form of the training data, so they perform poorly
on out-of-domain prompt recovery and sometimes
generate non-linguistic sequences. These limita-
tions, alongside the broader interest in uncovering
and protecting prompts and the practical utility of
generating high-quality data, motivate the develop-

1

Figure 1: Performance comparison of RPE and
output2prompt on the REhard dataset. Evaluates the
effectiveness of recovering complex system prompts
from outputs generated by different target LLMs.

Figure 2: Examples of non-linguistic prompts recovered
by outpue2prompt and prompts recovered by RPE
for the same latent prompts.

ment of a robust, training-free, zero-shot language
model inversion method that operates with limited
output access.

In this paper, we propose a novel language model
inversion technique, reverse prompt engineering
(RPE), which assumes the target LLM is a black-
box model accessible only through limited text
outputs. RPE infers the underlying prompt from
these outputs by leveraging the LLM’s reasoning
capabilities in combination with an iterative opti-
mization algorithm inspired by the genetic algo-
rithm (Sampson, 1976). Importantly, RPE in-
troduces no new models and requires no training.
The core idea of RPE is to conceptualize lan-
guage model inversion as a reverse-engineering
optimization problem, using the relationship be-
tween prompts and outputs to iteratively refine po-
tential candidates. By utilizing the reasoning ability
of an LLM to generate candidate prompts, RPE
evaluates these candidates based on the similarity
of their generated outputs to the true output. This
evaluation serves as the basis for iterative optimiza-

tion, guided by a genetic algorithm intertwined
with an LLM, to progressively reduce discrepan-
cies between candidates and the latent prompt, and
to converge on the most plausible prompt.

Compared to previous methods (Morris et al.,
2024; Zhang et al., 2024), RPE is more resource-
efficient, requiring only minimal information from
the target LLM (five text outputs) while ensur-
ing the generation of natural language outputs.
RPE outperforms state-of-the-art methods, achiev-
ing an average 6.2% improvement in cosine sim-
ilarity over output2prompt (Zhang et al., 2024)
on Llama-2 Chat (7B) outputs and 10.9% on
GPT-3.5 outputs across different datasets. Ad-
ditionally, RPE demonstrates superior perfor-
mance in system prompt recovery tasks, surpassing
output2prompt by an average of 5.8% in cosine
similarity.

Our main contributions are as follows.

• We provide the first study of the language
model inversion problem under black-box,
zero-shot, and limited data conditions.

• We design an innovative evaluation method
that selects the most accurate recovered
prompt from multiple candidates by their cor-
responding outputs, thereby enhancing the ac-
curacy of prompt recovery in scenarios involv-
ing multiple candidate prompts.

• We purpose a novel optimization algorithm
that leverages the LLM itself as an optimizer
to further enhance prompt recovery accuracy.

The code and datasets are available at
https://github.com/hanklee97121/RPE_
Reverse_Prompt_Engineering.

2 Related Works

2.1 Prompt Engineering

Prompt engineering is a closely related field, es-
sential for optimizing LLMs by designing prompts
that guide model outputs across diverse tasks with-
out altering model parameters (Sahoo et al., 2024).
Initial prompting techniques include zero-shot and
few-shot prompting (Radford et al., 2019; Brown
et al., 2020), demonstrating that LLMs can han-
dle novel tasks without additional training. Chain-
of-thought (CoT) prompting by Wei et al. (2022)
introduced step-by-step reasoning, which inspired
further techniques to enhance LLM reasoning and
logic abilities (Zhang et al., 2023; Wang et al.,

2

https://github.com/hanklee97121/RPE_Reverse_Prompt_Engineering
https://github.com/hanklee97121/RPE_Reverse_Prompt_Engineering

2023; Zhao et al., 2024; Hu et al., 2023; Yao et al.,
2024a; Long, 2023; Yao et al., 2024b; Weston and
Sukhbaatar, 2023; Zhou et al., 2023b; Wang et al.,
2024; Diao et al., 2024; Chia et al., 2023). To
improve accuracy and mitigate hallucinations, Re-
trieval Augmented Generation (RAG) integrates
information retrieval into prompting (Lewis et al.,
2020), and its variations enhance real-time knowl-
edge access for LLMs (Yao et al., 2023; Dhuliawala
et al., 2024; Li et al., 2024b; Yu et al., 2024b).
Other approaches incorporate external tools for im-
proved accuracy (Paranjape et al., 2023; Wu et al.,
2024). Techniques for automating prompt genera-
tion have also emerged, using LLMs as optimizers
to craft more effective prompts (Zhou et al., 2023a;
Yang et al., 2024), alongside specialized prompting
methods for specific tasks such as code generation
(Nye et al., 2021; Chen et al., 2023; Li et al., 2023b,
2024a), emotion comprehension (Li et al., 2023a),
user intent understanding (Deng et al., 2023), and
abstract concept extraction (Zheng et al., 2024).

2.2 Language Model Inversion
Unlike prompt engineering, which focuses on
crafting prompts to achieve better outputs, lan-
guage model inversion aims to infer the under-
lying prompt from given outputs. Morris et al.
(2024) first introduce this problem, developing
logit2prompt, a solution that extracts prompts
from next-token probability distributions using a
T5-based model (Raffel et al., 2020) with addi-
tional training. Building on logit2prompt, Zhang
et al. (2024) propose output2prompt, the current
state-of-the-art method for language model inver-
sion. The output2prompt method, also T5-based,
can recover prompts using only text outputs, with-
out requiring access to model logits (Zhang et al.,
2024).

Our proposed method, RPE, differs in that
it requires neither access to model logits nor
user prompts, making it particularly suitable
for closed-source LLMs like GPT-3.5. Un-
like output2prompt, which still relies on the
user prompt when reconstructing complex system
prompts, RPE depends solely on LLM outputs,
requiring no additional information. Moreover,
RPE is unique in that it does not require training,
training data, or large quantities of LLM outputs,
needing only five outputs compared to the 64 re-
quired by output2prompt. Since logit2prompt
and output2prompt use T5-based models with
smaller vocabularies than modern LLMs, RPE

Figure 3: Example of One Answer One Shot inference.

offers the advantage of generating prompts with
more flexibility in word choice.

3 Methodology

We formalize the language model inversion prob-
lem as follows: given a set of n responses, denoted
as A = {a1, a2, . . . , an}, generated by submitting
a single prompt p to an LLM n times, the objective
is to design a language model inversion method, de-
noted as RPE, that can infer the original prompt p
from the response set A, which means the output p′

of RPE should be the same as the original prompt
p:

min d(p, p′) (1)

LLM(p)n = A (2)

RPE(A) = p′ (3)

Here, d could be any score measuring the difference
between two prompts. The intriguing part is that p
is latent and thus unknown. In this setup, the LLM
is treated as a black box, meaning that, aside from
the text outputs, no access is granted to its internal
parameters or mechanisms. Moreover, the RPE
method is developed under a zero-shot constraint,
where no prior training data or additional examples
of outputs (beyond the given set) are available, and
no training is permitted in the development of the
method.

3.1 The “Naive” Approach
Our initial approach aims to directly infer the
prompt p using exactly one response a generated by
the LLM. Specifically, we query the LLM to infer
the underlying prompt based on the given response

3

Figure 4: Example of Five Answers One Shot and Five
Answer Five Shots inference.

a, a method we refer to as one-answer-one-shot
reverse prompt engineering (RPE1A1S). As illus-
trated in Figure 3, we provide an example where
GPT-3.5 is tasked with recovering a prompt from
a response related to start-up ideas. The recovered
prompt p′ contains some elements of the original
prompt p but also includes additional details drawn
from the response a, such as “customer service,”
“data analytics,” and “cybersecurity,” which are not
part of the original prompt. We hypothesize that
inferring the prompt from only one response may
lead the LLM to overemphasize specific details
from the response a that were not present in the
original prompt p, as demonstrated in the example
shown in Figure 3.

3.2 Five Answers Inference

We then extend the naive method by using mul-
tiple responses to recover the underlying prompt.
Given a set of responses A, we inform the LLM
that these responses are generated from the same
prompt p and ask the LLM to recover p based on
the entire set A. We set n = 5 in our experiments
and refer to this method as five-answers-one-shot
reverse prompt engineering (RPE5A1S). In Fig-
ure 4, we present an example of RPE5A1S using
GPT-3.5. Compared to RPE1A1S , the recovered
prompt p′ in RPE5A1S captures more elements
of the original prompt, such as “two,” “AI,” and
“missions.” Additionally, RPE5A1S avoids incor-
porating response-specific details, like “customer
service” and “data analytics,” which were mistak-
enly included by RPE1A1S . However, there is still
room for improvement, as the recovered prompt
does not fully replicate the original prompt.

Figure 5: Workflow of RPEGA

Building on RPE5A1S , we propose an enhanced
approach that generates multiple candidate prompts
and selects the most accurate one. Specifically,
given a set of responses A with n answers, we
ask the LLM to recover the prompt p and gen-
erate a set of m candidate prompts, denoted as
P ′ = {p′1, p′2, . . . , p′m}. To evaluate the quality of
each candidate prompt in P ′, we first pass each
recovered prompt p′i to the LLM and obtain a cor-
responding response a′i. We then compute the
ROUGE-1 score between a′i and each answer in
A, yielding a set of scores S′

i = {s′i1, s′i2, . . . , s′in}.
While it is intuitive to take the average of S′

i as the
final score, a promising prompt might generate a
response a′i that closely matches one of the answers
in A but not the others. To address this, we combine
both the mean and the maximum of S′

i to define the
final score for p′i as s′i =

mean(S′
i)+max(S′

i)
2 .

The recovered prompt with the highest score s′i
is selected as the final prompt. In our experiments,
we use n = 5 and m = 5, referring to this approach
as five-answers-five-shots reverse prompt engineer-
ing (RPE5A5S). As shown in Figure 4, the recov-
ered prompt using RPE5A5S captures more details
from the original prompt compared to RPE5A1S ,
although further improvement is still possible.

3.3 Iterative Method

To further enhance our approach, we introduce an
iterative method aimed at progressively optimiz-
ing the recovered prompt with each iteration. In-
spired by the genetic algorithm (Sampson, 1976),
we designed an algorithm that generates new candi-
date prompts based on existing ones and selects the
most accurate candidates using a custom evaluation
strategy. We refer to this iterative reverse prompt
engineering method as RPEGA. The complete
workflow of the algorithm is depicted in Figure
5. Below, we describe the key components of this
algorithm in detail.

4

Figure 6: Process of generating new candidate prompts
from the old ones.

3.3.1 Initialization
Given a set of responses A with n answers,
we first ask the LLM to infer the underlying
prompt p, generating m candidate prompts P ′ =
{p′1, p′2, . . . , p′m}, following the same procedure as
in RPE5A5S (see Section 3.2). We then evalu-
ate each candidate prompt p′i using the evaluation
method from RPE5A5S , where we pass each can-
didate p′i to the LLM to generate a response a′i
and calculate its performance score s′i. The per-
formance score s′i for each candidate prompt is
calculated by averaging the mean and max of the
ROUGE-1 score between a′i and each response in
A. This completes the initialization phase of the
RPEGA algorithm.

3.3.2 Iteration
Following the initialization step, we iteratively gen-
erate new candidate prompts and replace the ex-
isting candidates with better-performing ones. In
each iteration, we start with the set of original re-
sponses A, the current candidate set P ′, the re-
sponses A′ = {a′1, a′2, . . . , a′m} generated by can-
didate prompts P ′, and the corresponding perfor-
mance scores S′ = {s′1, s′2, . . . , s′m}. For each can-
didate prompt p′i and its corresponding response a′i,
we first ask the LLM to identify the differences
between a′i and the responses in A. Then, we
request the LLM to summarize these differences

Figure 7: Example prompt from each dataset.

and use the summary as a guide to modify the
candidate prompt p′i. The process is illustrated
in Figure 6 in detail. This process yields a new
set of candidate prompts, P ′′ = {p′′1, p′′2, . . . , p′′m},
for which we calculate the performance scores
S′′ = {s′′1, s′′2, . . . , s′′m} as in the previous step.
Based on these scores, we update the candidate
set by replacing low score prompts in P ′ with the
new high score candidates from P ′′, thus forming
the updated set of candidate prompts.

3.3.3 Output

After repeating the iteration process for k iterations,
we select the best-performing prompt from the fi-
nal candidate set P ′ based on the highest perfor-
mance score in S′. This selected prompt, denoted
as p′o, is the final recovered prompt produced by
the RPEGA method.

4 Computational Assessment

In this section, we present the results of testing our
proposed methods on various datasets, comparing
their performance with the benchmark approach of
outpu2prompt (Zhang et al., 2024). The evalua-
tion focuses on assessing the semantic and func-
tional similarity between the recovered and original
prompts. Specifically, we employ cosine similarity
as the evaluation metric, as it best aligns with the
language model inversion objective (Zhang et al.,
2024). Throughout all experiments, GPT-3.5 serves
as the backbone model for RPE.

4.1 Dataset

We evaluate our method using five datasets: Awe-
some ChatGPT Prompts1 (153 complex instruc-
tional role-based prompts), MetaMathQA (Yu et al.,
2024a) (395,000 linguistically diverse math word
problems), TruthfulQA (Lin et al., 2022) (817 truth-
fulness assessment prompts), Alpaca-GPT4 (Peng
et al., 2023) (52,000 simple instruction-following

1https://github.com/f/awesome-chatgpt-prompts

5

https://github.com/f/awesome-chatgpt-prompts

Figure 8: Demonstration of system prompt and user
prompt.

Figure 9: Comparison of RPRGA and
output2prompt.

prompts), and Dolly Creative Writing2 (673 cre-
ative writing prompts). Detailed descriptions are
provided in the appendix A.

Figure 7 presents an example prompt from each
dataset. To ensure comprehensive evaluation across
diverse LLM tasks, including general conversation,
complex instructions, and creative writing, we sam-
ple prompts from all five datasets. However, eval-
uating large datasets via the OpenAI API incurs
significant costs. To balance cost efficiency and
evaluation rigor, we randomly select 20 prompts
from each dataset, forming our primary test set,
REprompt, while maintaining diversity and com-
plexity.

To assess how prompt complexity impacts RPE
performance, we construct two additional test sets:
REhard, containing 100 challenging prompts from
Awesome ChatGPT Prompts, and REeasy, consist-
ing of 100 simpler prompts from Alpaca-GPT4.
These three test sets enable a thorough evaluation
of both the proposed method and the benchmark
model across varying levels of prompt complexity.

4.2 Benchmark

We compare the performance of our best-
performing method, RPEGA, against the state-of-
the-art benchmark output2prompt (Zhang et al.,

2https://huggingface.co/datasets/lionelchg/
dolly_creative_writing

2024). To ensure a fair comparison, given that
output2prompt is trained on outputs from Llama-
2 Chat (7B), experiments are performed on outputs
generated by both Llama-2 Chat (7B) and GPT-
3.5. Following Zhang et al. (2024), cosine simi-
larity is chosen as the evaluation metric due to its
alignment with the objectives of language model
inversion. We utilize OpenAI’s “text-embedding-
ada-002” and “text-embedding-3-large” models to
compute text embeddings for this purpose.

Zhang et al. (2024) also introduce a variant of
output2prompt, referred to as output2prompts,
specifically designed to recover system prompts
but requiring access to user prompt. In Figure 8,
we present an example from the REhard dataset,
which includes both system and user prompts.

In output2prompts, the user must generate a
total of 64 distinct outputs with 64 different out-
puts. These 64 outputs are then fed into the
trained output2prompts model to infer the system
prompt. To ensure a fair comparison, we evalu-
ate output2prompts under two additional settings:
(1) using a randomly selected subset of five outputs
from the 64, denoted as output2prompts5, and (2)
using the same five outputs utilized by RPEGA,
denoted as output2prompts5o. This comparison is
conducted exclusively on the REhard dataset, as the
other two datasets consist mostly of user prompts
and do not include system prompts. Additionally,
since output2prompts is trained on GPT-3.5 input
and output, all experiments comparing RPEGA

with output2prompts are performed using GPT-
3.5 outputs.

4.3 Experiments
We conduct experiments on all three datasets using
the methods described in Section 3 with parame-
ters n = 5, m = 5, and k = 5. As shown in Fig-
ure 9, RPEGA achieves higher cosine similarity
than output2prompt across all datasets, regardless
of whether the outputs are generated by Llama-2
Chat (7B) or GPT-3.5. On average across all 3
datasets, RPEGA outperforms output2prompt by
6.2% on Llama-2 Chat (7B) outputs and by 10.9%
on GPT-3.5 outputs, demonstrating its superior per-
formance.

Furthermore, we evaluate RPEGA’s cosine sim-
ilarity on different datasets to measure its per-
formance under different prompt complexities.
Figure 9 shows that RPEGA performs best on
REprompt, achieving 90.1% on GPT-3.5 outputs
with “text-embedding-ada-002” and 71.2% with

6

https://huggingface.co/datasets/lionelchg/dolly_creative_writing
https://huggingface.co/datasets/lionelchg/dolly_creative_writing

Figure 10: Comparison of RPEGA and
output2prompts on system prompt recovery (REhard).
In this figure we present the relative improvement of
each method compared to output2prompts5

System Prompt: I want you to act as an ascii artist. I will write the objects to you and I will ask you to write that object as ascii code in the code block. Write only ascii code. Do not explain
about the object you wrote. I will say the objects in double quotes. My first object is "cat"
User Prompt: My first object is "cat”

5 Inputs for !"# and $%&'%&(')$*'&:
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”
• "``` /_/\ (o.o) > ^ < ```”

!"#!" recovered prompt:
Prompt: Please generate the following ASCII art of a cat: /_/\ (o.o) > ^ <

$%&'%&(')$*'&# recovered prompt:
"<pad> GPT Description: The "_<unk>__| |____| |____|
|_____| |_____| |_____| |______| |______| |_______|
|___
___”

$%&'%&(')$*'& recovered prompt:
"<pad> <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> _/<unk> (
o.o) > > <unk> /<unk> _/<unk> (o.o) > <unk> /<unk> __/<unk> (o.o) > >
> <unk> <unk> /<unk> __/<unk> (o.o) > > <unk> <unk> <unk> <unk> <unk> /<unk>____________"

64 inputs for $%&'%&(')$*'&#:
• "1: "A cat”” ……
• "<unk>plaintext” ……
• "1: I am a digital artist specializing in ASCII

art.”……
• "____ _ _____ _ __”……

Figure 11: Example of RPEGA and output2prompt
recovering a prompt. To conserve space, we do not
include all 64 outputs generated for output2prompts,
but instead present one output for each query mentioned
earlier.

“text-embedding-3-large.” In contrast, on REhard,
its performance drops by 4.8% and 11.9%, respec-
tively, due to the complex and restrictive nature
of these prompts (e.g. “do not write explana-
tions” and “answer only ASCII drawing”). Ad-
ditionally, performance declines when switching
from REprompt to REeasy, as prompts from Meta-
MathQA (in REprompt) are easier to recover than
those from Alpaca-GPT4, the source of REeasy.
When solving mathematical problems, LLMs tend
to repeat the original question, facilitating recov-
ery, whereas REeasy prompts often lead to extra
elaboration that hinders prompt recovery. Overall,
RPEGA performs best on REprompt, moderately
on REeasy, and worst on REhard, but still handily
beating the benchmark, indicating that detailed in-
structions with output restrictions present the great-
est challenge for language model inversion.

With n = m = k = 5, RPEGA issues 230
queries to a LLM and processes approximately
100,000 input tokens and 30,000 output tokens to
recover a prompt. The benchmark output2prompt
is trained on 30,000 prompts, with each prompt
necessitating 64 outputs—resulting in a total of
1,920,000 queries to an LLM during training. The

Figure 12: Examples of recovered prompts of RPEGA

and output2prompt.

final output2prompt model is based on the T5
architecture and comprises of 222 million param-
eters. Next, we evaluate the ability of RPEGA

to recover the system prompt on REhard and
compare it with output2prompts and its variants
with additional settings. Figure 10 reports the
relative performance improvement with respect
to output2prompts5 which is the most relevant
comparison to RPEGA (both query the LLM 5
times per round). On system prompt recovery,
RPEGA achieves higher cosine similarity than
both output2prompts5 and output2prompts5o.
When evaluated with “text-embedding-3-large,”
RPEGA even exhibits a relative improvement
of 52.4% over output2prompts5. Moreover,
when compared with output2prompts, which uti-
lizes all 64 outputs, RPEGA achieves higher co-
sine similarity, with enhancements of 2.3% us-
ing “text-embedding-ada-002” and 8.1% using
“text-embedding-3-large.” These findings indi-
cate that RPEGA produces prompts that are more
semantically and functionally aligned with the
original system prompts than those recovered by
output2prompts.

Furthermore, since RPEGA uses an LLM to
generate the recovered prompt, the output is guar-
anteed to be in natural language. In contrast, the
output of output2prompt and output2prompts
occasionally produces sequences that are not lan-
guage. As illustrated in Figure 11, RPEGA suc-
cessfully recovers a complete, coherent sentence,
whereas output2prompt and output2prompts do
not. The example in Figure 11 represents a partic-
ularly challenging task, as RPEGA has only five
identical answers, containing only ASCII symbols,
to work with. In contrast, output2prompts has ac-
cess to more information, especially from the query
“Provide 16 scenarios where I can use your services.
Start with ‘1:’.” Despite this difficulty, RPEGA

7

Marketing Plan Video Game Design Lyrics
Example Number Template RPE Template RPE Template RPE

1 2 5 3 4 1 6
2 0 7 0 7 1 6
3 0 7 2 5 1 6
4 / / / / 2 5
5 / / / / 3 4
6 / / / / 3 4

summary 2(9.5%) 19(90.5%) 5(23.8%) 16(76.2%) 11(26.2%) 31(73.8%)

Table 1: Result of the Use Case Experiment. Record the number of people who think the answer generated by the
corresponding method is better than the other.

still outperforms output2prompts, demonstrating
its robustness in generating natural and semanti-
cally meaningful prompts, even under constrained
conditions.

Another key advantage of RPEGA is its abil-
ity to generate prompts in free form, whereas
output2prompt and output2prmopts is con-
strained to producing prompts in a specific for-
mat, especially output2prompts, as shown in Fig-
ure 12. This limitation of output2prompts may
stem from its training data, where all prompts
follow a uniform structure. Additionally, mod-
els in output2prompt and output2prompts has
a smaller vocabulary size compared to GPT-3.5,
leading to the possible inclusion of “<unk>” tokens
in its outputs, as seen in the first example in Fig-
ure 12. An ablation study of RPE is included in
appendix B

4.4 Use Case

A potential use case of RPE is extracting prompts
from high-quality content, such as marketing plans,
video game designs, and song lyrics, enabling users
to refine and reuse them for generating similar high-
quality outputs. To explore this, we collect samples
from these domains and use RPEGA to infer the
original prompts. The inferred prompts are then
used to generate new content—marketing plans
for different products, game designs with varied
themes, and lyrics featuring diverse motifs—which
are compared against outputs generated using stan-
dard templates.

Participants in our evaluation are recruited from
a pool of college students. An online question-
naire has been developed and its link is distributed
through email and social media platforms to reach
individuals who had not previously been known to
the research team, thereby ensuring an unbiased

sample. To assess quality, we conducted a blind
evaluation in which participants reviewed both tem-
plate generated and RPE generated responses for
the same task without any indication of their ori-
gin. Participants were asked to select the response
they deemed more favorable, with the option cho-
sen by the majority being classified as the higher
quality response. Table 1 presents the human evalu-
ation results, demonstrating that RPE outperforms
template based methods in generating content pre-
ferred by users. This result indicates that RPE is
better for producing more high-quality data than
templates. The workflow for generating new high
quality data and complete examples is provided in
appendix C.

5 Conclusion

We address the language model inversion prob-
lem under black-box, zero-shot conditions, intro-
ducing reverse prompt engineering. RPE utilizes
only an LLM and an optimization algorithm to
recover prompts from as few as five text outputs.
Experiments on three datasets (REprompt, REhard,
REeasy) demonstrate that RPE effectively recon-
structs high-quality prompts. On average across
all datasets and embedding models, RPE outper-
forms output2prompt by 8.55% in cosine sim-
ilarity on language model inversion. In system
prompt reconstruction, RPE recovers prompts
from REhard that are 5.8% closer in cosine similar-
ity to the original prompts than output2prompts,
a variant tailored for system prompt recovery. Ad-
ditionally, use-case experiments show that RPE
generates higher-quality text that human evaluators
prefer over template-generated outputs.

8

6 Limitations

While our approach demonstrates significant ad-
vancements in language model inversion under
zero-shot and black-box conditions, there are sev-
eral limitations to consider. First, although the
method requires only five outputs from the target
LLM, making it resource-efficient compared to ex-
isting approaches, real-world scenarios may im-
pose stricter constraints where fewer outputs are
available, which could affect its applicability. Sec-
ond, the quality and informativeness of the outputs
play a critical role in the effectiveness of the prompt
recovery process. In cases where the latent prompt
restricts the target LLM to produce minimal or un-
informative responses—such as outputs containing
only ASCII characters, as demonstrated in Figure
11—our method has room for improvement to han-
dle such situations more effectively. Lastly, the
computational cost of iterative optimization can
scale with the complexity of the task, posing chal-
lenges for large-scale or time-sensitive applications.
Addressing these limitations offers opportunities
for future work to further enhance the robustness
and applicability of the proposed framework.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. In Transactions
on Machine Learning Research.

Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Sou-
janya Poria, and Lidong Bing. 2023. Contrastive
chain-of-thought prompting. In arXiv preprint
arXiv:2311.09277.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.
In arXiv preprint arXiv:2311.04205.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2024. Chain-of-verification reduces hal-
lucination in large language models. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 3563–3578. Association for Computa-
tional Linguistics.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan,
Xiang Liu, and Tong Zhang. 2024. Active prompt-
ing with chain-of-thought for large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1330–1350. Association for
Computational Linguistics.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song,
Wai Lam, and Yue Zhang. 2023. Chain-of-symbol
prompting elicits planning in large langauge models.
In arXiv preprint arXiv:2305.10276.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems, volume 33,
pages 9459–9474.

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. 2023a. Large language models under-
stand and can be enhanced by emotional stimuli. In
arXiv preprint arXiv:2307.11760.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and brian ichter. 2024a. Chain of code:
Reasoning with a language model-augmented code
emulator. In Forty-first International Conference on
Machine Learning.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023b. Struc-
tured chain-of-thought prompting for code genera-
tion. In ACM Transactions on Software Engineering
and Methodology. ACM New York, NY.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing.
2024b. Chain-of-knowledge: Grounding large lan-
guage models via dynamic knowledge adapting over
heterogeneous sources. In The Twelfth International
Conference on Learning Representations.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Jieyi Long. 2023. Large language model guided tree-of-
thought. In arXiv preprint arXiv:2305.08291.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vi-
taly Shmatikov, and Alexander M Rush. 2024. Lan-
guage model inversion. In The Twelfth International
Conference on Learning Representations.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.48550/arXiv.2311.09277
https://doi.org/10.48550/arXiv.2311.09277
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.18653/v1/2024.acl-long.73
https://doi.org/10.48550/arXiv.2305.10276
https://doi.org/10.48550/arXiv.2305.10276
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.48550/arXiv.2307.11760
https://doi.org/10.48550/arXiv.2307.11760
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://openreview.net/forum?id=vKtomqlSxm
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://doi.org/10.1145/3690635
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/arXiv.2305.08291
https://doi.org/10.48550/arXiv.2305.08291
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. In arXiv preprint arXiv:2112.00114.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. In arXiv preprint arXiv:2303.09014.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
GPT-4. In arXiv preprint arXiv:2304.03277.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. In Ope-
nAI blog, volume 1, page 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. In Journal of machine learning research,
volume 21, pages 1–67.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha. 2024.
A systematic survey of prompt engineering in large
language models: Techniques and applications. In
arXiv preprint arXiv:2402.07927.

Jeffrey R Sampson. 1976. Adaptation in natural and
artificial systems (John H. Holland). In SIAM Review,
volume 18, pages 529–530. Society for Industrial and
Applied Mathematics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In The Twelfth International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in
Neural Information Processing Systems, volume 35,
pages 24824–24837.

Jason Weston and Sainbayar Sukhbaatar. 2023. System
2 attention (is something you might need too). In
arXiv preprint arXiv:2311.11829.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis N. Ioanni-
dis, Karthik Subbian, Jure Leskovec, and James Zou.
2024. Avatar: Optimizing LLM agents for tool us-
age via contrastive reasoning. In Advances in Neural
Information Processing Systems.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024a. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems, volume 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Yao Yao, Zuchao Li, and Hai Zhao. 2024b. GoT: Effec-
tive graph-of-thought reasoning in language models.
In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 2901–2921. Associ-
ation for Computational Linguistics.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024a. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Peixin
Cao, Kaixin Ma, Jian Li, Hongwei Wang, and Dong
Yu. 2024b. Chain-of-note: Enhancing robustness in
retrieval-augmented language models. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 14672–14685.
Association for Computational Linguistics.

Collin Zhang, John Xavier Morris, and Vitaly
Shmatikov. 2024. Extracting prompts by inverting
LLM outputs. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14753–14777. Association for Computa-
tional Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber,
Jae Hee Lee, Kun Chu, and Stefan Wermter. 2024.
Enhancing zero-shot chain-of-thought reasoning in
large language models through logic. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation, pages 6144–6166.

10

https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2303.09014
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.48550/arXiv.2304.03277
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.1137/1018105
https://doi.org/10.1137/1018105
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/pdf?id=_VjQlMeSB_J
https://openreview.net/pdf?id=_VjQlMeSB_J
https://doi.org/10.48550/arXiv.2311.11829
https://doi.org/10.48550/arXiv.2311.11829
https://openreview.net/forum?id=N4quRxE19p
https://openreview.net/forum?id=N4quRxE19p
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.findings-naacl.183/
https://aclanthology.org/2024.findings-naacl.183/
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://doi.org/10.18653/v1/2024.emnlp-main.813
https://doi.org/10.18653/v1/2024.emnlp-main.813
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://doi.org/10.18653/v1/2024.emnlp-main.819
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://aclanthology.org/2024.lrec-main.543/
https://aclanthology.org/2024.lrec-main.543/

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024. Take a step back: Evoking reasoning via
abstraction in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023a. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang
Tao, Guodong Long, Jian-Guang Lou, and Jianbing
Shen. 2023b. Thread of thought unraveling chaotic
contexts. In arXiv preprint arXiv:2311.08734.

A Public Datasets

• Awesome ChatGPT Prompts: This is a cu-
rated set of 153 prompts resembling system
messages used in real-world LLM-based APIs
and services. These prompts are structured as
detailed instructions, designed to adapt the
LLM to specific roles, such as a food critic or
a Python interpreter.3

• MetaMathQA: Introduced by Yu et al.
(2024a), MetaMathQA consists of 395,000
linguistically diverse math word problems,
ranging in difficulty from primary school to
graduate school.

• TruthfulQA: TruthfulQA(Lin et al., 2022)
consists of 817 questions across 38 categories,
including health, law, finance, and politics.
These questions are designed in a way that
some humans might answer incorrectly due to
false beliefs or misconceptions. The dataset
is intended to evaluate whether a language
model generates truthful answers to such ques-
tions.

• Alpaca-GPT4: Alpaca-GPT4 contains
52,000 instruction-following examples
generated by GPT-4 using prompts from the
Alpaca dataset, and it was used to fine-tune
LLMs in the work by Peng et al. (2023).

• Dolly Creative Writing: This dataset con-
sists of 673 prompts designed to assess the
creativity of a language model. Each prompt
is either a question or an instruction, guiding
the LLM to perform a creative writing task.4

3https://github.com/f/awesome-chatgpt-prompts
4https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 13: Comparison of different RPE methods on
three datasets.

B Ablation Study

In the ablation study, we compare the performance
of RPEGA and its variants depicted in Section 3.
In addition, we examine the impact of different
approaches to calculating the performance score s′

for the RPEGA variant. Specifically, the variant
RPEGAm computes s′i by selecting the maximum
ROUGE-1 score between a′i and each response in
set A, while RPEGAa calculates s′i as the average
ROUGE-1 score between a′i and all responses in
A. The best and thus default RPEGA method, by
contrast, determines s′i as the average of both the
mean and maximum ROUGE-1 scores.

As illustrated in Figure 13, RPEGA consistently
outperforms the other RPE variants. The results
from RPEGAm and RPEGAa indicate that using
either the maximum or the average score alone for
performance calculation compromises the quality
of the inferred prompts. Furthermore, the superior
performance of RPE5A5S over other non-iterative
approaches underscores the efficacy of our evalu-
ation strategy in selecting high-quality recovered
prompts.

C Details of Generating High Quality
Content

In Figure 14, we illustrate the workflow for gener-
ating new high-quality data using both RPE and
templates, exemplified by generating a marketing
plan for Product B based on Product A’s plan.

C.1 Use Case Experiments: Marketing Plan
We begin with a marketing plan for an energy drink
as our initial reference point. Using both the RPE
and template methods, we then generate marketing

11

https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=3bq3jsvcQ1
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-
https://doi.org/10.48550/arXiv.2311.08734
https://doi.org/10.48550/arXiv.2311.08734
https://github.com/f/awesome-chatgpt-prompts
https://huggingface.co/datasets/lionelchg/dolly_creative_writing
https://huggingface.co/datasets/lionelchg/dolly_creative_writing

Figure 14: Workflow to generate new high quality an-
swers.

plans for three distinct products: “a new smart-
phone targeting seniors aged 65 and older”, “a
financial software tailored for small businesses and
individual investors”, and “developmental toys de-
signed for toddlers under one year old”. As shown
in Table 1, for each product, a greater number of
participants favored the RPE-generated market-
ing plan over the template-generated one. Overall,
90.5% of responses preferred the RPE method,
while only 9.5% favored the template method. De-
tailed marketing plans are provided in appendix
C.4.

C.2 Use Case Experiments: Video Game
Design

Using the game design of the popular video game
“Don’t Starve” as a reference, we created high-
quality designs for other games. We prompted
GPT-3.5 to design games based on the following
themes: “a rogue-like game incorporating elements
of Greek mythology and combat,” “a kart racing
game that includes multiplayer and item-based me-
chanics,” and “a first-person shooter game combin-
ing elements of war and counter-terrorism.” Using
both RPE and template methods, we produced
a total of six game designs. As shown in Table
1, participants preferred the game designs gener-
ated by RPE over those created by the template
method. Overall, 76.2% of responses favored the
RPE-generated designs, while only 23.8% pre-
ferred the template-generated designs. Complete
game designs are presented in appendix C.5.

C.3 Use Case Experiments: Lyrics

For the lyrics generation task, we first use “Cruel
Summer” by Taylor Swift as a reference to create
lyrics for songs with the following themes: “evok-
ing sadness and grief with themes of loss, winter,
and religion,” “evoking happiness and joy with
themes of family, friends, college life, and flowers,”
and “evoking excitement and positivity with themes
of courage, hope, and the future.” We then use

“Master of Puppets” by Metallica as another refer-
ence to generate lyrics for songs themed around
“love and heartbreak,” “self-discovery and personal
growth,” and “nostalgia and memories.” For each
theme, we generated two sets of lyrics using both
the template and RPE methods, producing a total
of twelve lyrics. Participants preferred the RPE-
generated lyrics, with 73.8% of responses favoring
them over the template-generated versions, which
received only 26.2% preference. All lyrics are pro-
vided in appendix C.4.

C.4 Complete Examples of Market Plan
Figure 15 presents the reference marketing plan,
the prompt recovered using RPE, and edited
prompts used to generate marketing plans for dif-
ferent products. Complete marketing plans gener-
ated from perturbed RPE-recovered prompts and
template-based prompts are provided in Figures 16,
17, and 18.

C.5 Complete Examples of Video Game
Description

Figure 19 displays the reference video game de-
scription, along with the prompt recovered using
RPE and modified prompts used to generate de-
scriptions for video games with varying themes.
The full set of video game descriptions gener-
ated from perturbed RPE-recovered prompts and
template-based prompts is presented in Figures 20,
21, and 22.

C.6 Complete Examples of Lyrics
Figures 23 and 24 present the reference song lyrics,
along with the prompt recovered using RPE and
modified prompts used to generate lyrics in differ-
ent styles and themes. The complete set of lyrics
generated from perturbed RPE-recovered prompts
and template-based prompts is shown in Figures
25, 26, 27, 28, 29, and 30.

12

Figure 15: Reference marketing plan and the prompt recovered by RPE, along with perturbed prompts used to
generate marketing plans for different products.

Figure 16: Example 1 of market plan generation.

13

Figure 17: Example 2 of market plan generation.

Figure 18: Example 3 of market plan generation.

14

Figure 19: Reference video game description and the prompt recovered by RPE, along with perturbed prompts
used to generate video description for different themes.

Figure 20: Example 1 of video game description generation.

15

Figure 21: Example 2 of video game description generation.

Figure 22: Example 3 of video game description generation.

16

Figure 23: Reference song lyrics 1 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

Figure 24: Reference song lyrics 2 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

17

Figure 25: Example 1 of song lyrics generation.

Figure 26: Example 2 of song lyrics generation.

18

Figure 27: Example 3 of song lyrics generation.

Figure 28: Example 4 of song lyrics generation.

19

Figure 29: Example 5 of song lyrics generation.

Figure 30: Example 6 of song lyrics generation.

20

	Introduction
	Related Works
	Prompt Engineering
	Language Model Inversion

	Methodology
	The ``Naive'' Approach
	Five Answers Inference
	Iterative Method
	Initialization
	Iteration
	Output

	Computational Assessment
	Dataset
	Benchmark
	Experiments
	Use Case

	Conclusion
	Limitations
	Public Datasets
	Ablation Study
	Details of Generating High Quality Content
	Use Case Experiments: Marketing Plan
	Use Case Experiments: Video Game Design
	Use Case Experiments: Lyrics
	Complete Examples of Market Plan
	Complete Examples of Video Game Description
	Complete Examples of Lyrics

