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Abstract—We develop a specialized model-based unit testing
framework designed to enhance the verification and quality as-
sessment of Random Forest models before they are implemented
and deployed. This framework is tailored to identify and resolve
issues in model behavior, ensuring that the models are robust
and reliable. Our approach centers on a series of tests that
scrutinize the model’s performance across various simulated data
conditions, assessing both its accuracy and its ability to handle
diverse data scenarios. Our tests proves capable of handling both
a similarity assessment between two models and individual model
quality control scenarios. We present extensive experiments on
publicly challenging datasets, aiming to establish a thorough
process that proves the model’s readiness for operational use
and its robustness to expected performance standards.

Index Terms—Unit Test, Model Testing, Random Forest, Ro-
bustness.

I. INTRODUCTION

In the realm of machine learning, RF models play an
important role due to their robustness, versatility, and ability
to handle complex datasets. These models are extensively
used across various fields. Medical scientists employ them to
detect and diagnose breast diseases [1], [16], stock traders
analyze trading patterns and predict distress risks [28], and
ecologists reveal complex interactions within ecosystems [26].
As the adoption of RF models continues, so does the im-
perative to ensure their expected behavior and correctness
before deployment. The consequences of deploying unreliable
models can be severe. For instance, a poorly tested model
in a medical application might mistakenly predict patient
responses to treatments, leading to direct harm to patients,
wasted resources, and eroded trust in medical analytics. The
potential for such serious consequences highlights the need for
comprehensive testing methodologies that can prevent errors
and provide guidance to decision-making processes.

Developing reliable RF models is further complicated by
the collaborative nature of machine learning projects. Effective
collaboration across diverse teams is critical for the success
of a machine learning project, particularly when developing
and deploying RF models. However, this collaboration often
comes with challenges due to diffused responsibility and
varying priorities among team members. Engineers focus on
model stability, data scientists prioritize performance, and
product managers are concerned with timelines. To accompany
these divergent priorities and maximize project outcomes,
implementing rigorous, unified testing protocols is needed.

Our proposed model-based testing methods are designed to
address these challenges by providing a standard framework
that assesses model performance across different data inputs.
This not only helps in aligning team objectives but also in
verifying the integrity and reliability of models before their
full-scale deployment, ensuring that all team perspectives are
properly integrated.

To address these challenges above, we introduce a novel
model testing pipeline specifically designed for RFs. This
comprehensive evaluation framework is the first of its kind
to assess not only model robustness and predictive ability,
but also model similarity for a pair of models, i.e. paired
models. Additionally, it evaluates single model performance
even when clear standards for model quality are absent. Our
approach ensures that both individual and paired models meet
high standards of accuracy and reliability before deployment,
thereby reducing risks in real-world applications.

Our methodology distinctively designs various metrics, de-
tecting the subtle differences in model structures and behavi-
ors that traditional methods often overlook. This all-rounded
framework evaluates multiple dimensions of model behavior
and characteristics, ranging from model stability under data
perturbations, to a detailed analysis of feature influence using
Shapley values.

The contributions of this paper are three-fold: 1. Innov-
ative Methodology for Model Comparison: We introduce a
methodology for model comparison that integrates feature im-
portance weighting with an information similarity assessment
strategy, complemented by appropriate data perturbations. This
approach has been thoroughly evaluated across diverse data-
sets, encompassing both synthetic and real-world scenarios.
2. Systematic Design on Individual Tree Components: Our
research introduces an approach to RF model evaluation.
Unlike traditional methods that treat the forest as a whole,
we systematically analyze the intrinsic structure of individual
trees by decomposing the RF into distinct components. By ex-
amining these components separately, our method significantly
enhances testing sensitivity, revealing subtle discrepancies
that conventional prediction metrics often ignore. 3. A New
Approach to Test Model Randomness: We develop a method
to assess the level of randomness in models, specifically in
situations where no standardized benchmark for a good model
exists. This addition significantly enriches the toolkit available
for model assessment and is crucial for real-world applications



where black-box models are common.
In summary, our work significantly advances the testing

protocols for RF models by introducing a workflow that not
only evaluates model performance in a multifaceted way but
also provides insights into model behavior that are crucial for
deploying reliable and effective machine learning solutions.
This architecture serves as a fundamental check before they
are deployed, saving both computational resources and time.

II. LITERATURE REVIEW

Random forest (RF) models, introduced in [3], are ensemble
methods known for their high predictive accuracy and flexib-
ility across various tasks. By aggregating multiple decision
trees, RF models handle both classification and regression
problems on numerical and categorical data and are valued
for their robustness to outliers, capability to manage missing
data, and effectiveness in capturing complex non-linear re-
lationships [3], [6]. Their widespread utility is demonstrated
across diverse applications: RFs outperform neural networks in
solar radiation prediction [2], surpass support vector machines
in diagnosing faults in rotating machinery [11], and effectively
handle specialized tasks such as real-time 3D face recognition
[7], COVID-19 patient outcome forecasting [20], [21], land-
slide risk assessment [24], and deforestation detection [25].
Given their prominence in critical, high-stakes settings, robust
quality control measures are essential to verify their reliability
and correctness prior to deployment.

Beyond predictive performance, RF models inherently
provide interpretability through built-in feature importance
metrics, notably mean decrease impurity and permutation
importance. While interpretability enhances transparency and
model verification, ensuring overall model reliability requires
systematic unit testing. Yet, unit testing in machine learning
faces unique challenges, notably the “oracle problem,” which
refers to the difficulty of defining exact expected outputs
and non-determinism resulting from stochastic components
like random initialization and training [17]. Early studies
have proposed using approximate oracles by verifying in-
variant properties, including output shapes, value ranges, and
consistency across transformations [18]. In addition, Jia et
al. [13] used a mutation analysis to assess the effectiveness
of unit tests in deep learning frameworks, revealing that many
conventional tests fail to capture subtle defects. Despite these
insights significantly advancing ML testing approaches, their
applicability remains limited for traditional, non-differentiable
models like RFs, signaling a notable gap that we diminish
herein.

In parallel to these insights, abundant practical tools have
emerged to support structured testing within ML pipelines.
Software testing libraries such as Pytest [14] have been
effectively adapted to ML contexts, allowing developers to
validate pipeline components, ranging from data loaders,
preprocessing functions, to training routines through asser-
tions on tensor shapes, data formats, and parameter updates.
Specialized testing frameworks have also become prevalent;
notably, DeepChecks [5] provides built-in automated test

suites that perform train-test distribution checks to detect
data leakage and that monitor model performance to quickly
identify data degradation. Scikit-learn further contributes the
check_estimator utility, offering a standardized test suite ensur-
ing ML models conform to expected implementation patterns,
such as fitting consistency, prediction outputs, and proper
handling of edge cases. Lastly, data validation frameworks
such as Great Expectations serve as an unit testing at the
data preparation stage to prevent data quality issues from
propagating downstream [10]. While these tools are beneficial
for verifying pipeline integrity, they primarily focus on data
quality and conformance rather than directly assessing model
suitability. Microsoft’s ErrorAnalysis toolkit [19], though valu-
able for diagnosing complex error patterns with post-hoc
decision tree visualisations, works only after a model is
trained. Because it clusters residuals rather than inspecting
the forest’s internal structure, it cannot certify during pre-
deployment testing whether a candidate RF already meets
required structural and behavioral specifications. The gaps
altogether emphasize the need for specialized RF-centric pre-
screening solutions.

Advanced model-level testing methodologies enhance veri-
fication by assessing broader model behaviors. Metamorphic
testing addresses the oracle problem by validating predefined
relationships, such as proportional scaling between inputs and
outputs [29]. Adversarial testing evaluates robustness by craft-
ing slight perturbations to trigger mispredictions, effectively
revealing worst-case vulnerabilities. However, recent research
stresses its computational challenges, especially for tree en-
sembles such as RFs [4]. Coverage-guided testing, effective
primarily with differentiable neural networks, quantifies how
thoroughly internal structures are exercised but faces limit-
ations in fault detection reliability [22]. Rule-based testing,
exemplified by CheckList [23], leverages domain-specific ex-
pectations to systematically identify subtle logical inconsist-
encies but relies heavily on manual expert input. Collectively,
these advanced methods suffer from significant drawbacks
for RF testing, including computational inefficiency, reliance
on manual intervention, and limited applicability of metrics
designed primarily for differentiable models.

These gaps indicate notable limitations in current method-
ologies, highlighting the absence of comprehensive internal
verification methods specifically tailored for RF models. Mo-
tivated by these limitations, our research introduces a system-
atic, model-based unit testing framework explicitly designed
to enhance the robustness and reliability of RF models. Our
method evaluates RF performance across diverse synthetic
scenarios, supports direct comparisons between pairs of RF
models, and provides robust mechanisms for individual model
quality assessment even when a good-fit standard is unavail-
able. This approach empowers practitioners across various
disciplines to reliably assess RF model quality, making it ac-
cessible even to users with limited machine learning expertise,
thereby significantly enhancing confidence in model readiness
for critical downstream applications.



III. METHODOLOGY

A. Pipeline Overview

Our model-based unit testing scheme is specifically de-
signed for RF models, since the testing units are designed
on top of forest’s key parameters such as the number of trees
and their tree depths. The testing system is designed to address
two distinct scenarios:
1. Performance Similarity Assessment for Paired Models:
Given a pair of trained RF models along with a dataset, the
objective is to assess their similarity under data perturbations.
This assessment is conducted by first imposing robustness by
means of perturbations and then through a series of unit tests,
including dependency check, prediction ability, and feature
importance check units in order.
2. Quality for a Single Model: Similarly, for a single trained
RF model along with a dataset, we determine its quality by
employing variants of augmentations, all importance together
with an additional randomness generator comparison unit.

Each unit test in the pipeline categorizes results into several
classes, with each class assigned a specific score. The final
assessment on whether two models are similar, or a single
model is of good quality, is determined by aggregating the
scores from all unit tests. In the following sections, we detail
each interconnected testing unit, explaining their individual
roles and how they contribute to the overall assessment.

B. Pairwise Model Testing Pipeline

1) Robustness by Perturbation
Let us first explore the pairwise RF models comparison

testing pipeline. The pipeline input contains a dataset (X, y),
where X ∈ Rn×m, y ∈ Rn×1 are the input data matrices,
and n is the number of samples, m is the number of features,
and two RF models M1 with n1 trees and M2 with n2 trees
which are both trained. The output of the pipeline would be
binary, either M1 and M2 are similar in their ability towards
interpreting the dataset (X, y), or they are different. We denote
by M(X) the prediction of model M on samples in X .

The preprocessing step in our pipeline is dedicated to
assessing model robustness through systematic data perturb-
ations. We start by randomly splitting (X, y) into training
data (Xtrain, ytrain) and testing data (Xtest, ytest). For each
sample in the test dataset Xtest, we generate corresponding
perturbed samples to form a new dataset Xptest. We apply four
distinct perturbations on a per-sample basis: replacing random
values with the sample mean, swapping values between “in-
lier” and “outlier” regions, adding Gaussian noise, and increas-
ing the overall magnitude of the test data. This multifaceted
approach enables us to evaluate model behavior under diverse
data transformations. The complete perturbation process is
detailed in Algorithm 1.

Algorithm 1 Test Data Perturbation for Model Robustness
Evaluation
Require: Trained RF models M1 and M2, test data

(Xtest, ytest)
1: for each sample i in Xtest do
2: Select perturbation method pi randomly from:

• Replace with Mean
• In-and-Out Swap
• Add Gaussian Noise
• Increase Magnitude

3: Apply selected perturbation pi to sample i in Xtest
4: Xptest ← Xtest
5: end for
6: ŷ1 ←M1(Xtest), ŷ2 ←M2(Xtest)
7: ŷp1 ←M1(Xptest), ŷp2 ←M2(Xptest)
8: return (Xptest, ŷ1, ŷ2, ŷp1, ŷp2)

The four perturbation methods are applied to Xtest to assess
model robustness, and perturbed testing data is represented as
(Xptest, yptest) and perturbed dataset is denoted as (Xp, yp).
Detailed description of the perturbation methods are as fol-
lows.
a. Mean Replacement: For each sample Xi,j , apply the fol-
lowing transformation:

Xpi,j =

{
µj with probability pperturb

Xi,j with probability (1− pperturb)

where µj is the mean of the j-th feature.
b. Quantile-based Value Swapping: Let Qj,0.1 and Qj,0.9 be
the 10th and 90th percentiles of the j-th feature, respectively.
Let Ij = {i : Qj,0.1 ≤ Xi,j ≤ Qj,0.9} and Oj = {i : Xi,j <
Qj,0.1 or Xi,j > Qj,0.9}. We then randomly select q0%
indices from Ij and pair them with randomly selected indices
from Oj . For each pair (i1, i2), where i1 ∈ Ij and i2 ∈ Oj ,
we swap their values: Xpi1,j = Xi2,j and Xpi2,j = Xi1,j .
c. Gaussian Noise Addition: Add noise to each element Xi,j

by Xpi,j
= Xi,j + ϵi,j , where ϵi,j ∼ N (0, σ2

j,strategy), and
σj,strategy = f1 · σj + 0.05 · f2 · |µj |. Here, σj and µj

are the empirical standard deviation and mean of the j-th
feature. Parameters f1, f2 are predefined factors that determine
the contribution of the empirical standard deviation and the
absolute mean to the noise level.
d. Magnitude Increase: We scale each element Xi,j by a
constant factor Xpi,j

= c ·Xi,j , where c is a pre-defined value.
These perturbations are applied randomly to each sample in

Xtest with equal probability to generate the perturbed dataset
Xptest.

2) Testing Units
Similarity Check Unit The first unit in our testing pipeline is

the Similarity Check Unit, which employs an approach blend-
ing conventional genetic algorithms with information theory
principles. This unit constructs and analyzes MI matrices to
assess the structural similarities between the two RF models,
M1 and M2, with n1 and n2 trees respectively.



To ensure comparability, we first equalize the number of
trees in both models. Let n0 = min{n1, n2}. We randomly
remove max{n1, n2}−n0 trees from the model with the larger
forest, thereby equalizing the number of trees in both models
to n0. We denote the two adjusted models as M ′

1 and M ′
2.

The core idea of this unit involves the construction of intra-
model and inter-model MI matrices. Given a RF U and a
tree order σ, let Uσ be the RF where the trees are ordered
based on σ. Given two RFs U and V with the same numbers
µ0 of trees, with σ1 and σ2 being tree orders of U and V ,
respectively, let I(Uσ1

, Vσ2
) be the µ0×µ0 matrix whose (i, j)

entry corresponds to the average MI of the predictions of the
ith tree of Uσ1 and the jth tree of Vσ2 on the test data set. If
U = V , then we only consider σ1 = σ2.

The details of the computation are described in Appendix A,
which outlines our use of the KNN algorithm to approximate
entropies for tractability. To apply this method to models U
and V , we first extract predictions from each tree in both
models and treat these predictions for KNN. We then employ
the KNN-based MI calculator, initialized with a parameter k0,
to estimate MI between pairs of tree predictions.

Next, to quantify and optimize the structural similarity
between two RF models M ′

1, M ′
2, we solve

min
σ1,σ2

∥∥I(M ′
1,σ1

,M ′
2,σ2

)
− I

(
M ′

1,σ1
,M ′

1,σ1

)∥∥
F

+
∥∥I(M ′

1,σ1
,M ′

2,σ2

)
− I

(
M ′

2,σ2
,M ′

2,σ2

)∥∥
F
.

(1)

Here | · |F denotes the Frobenius norm. In other words, the
objective is to identify the optimal permutations of tree orders
in two forests such that the combined sum of the Frobenius
norm differences between their MI matrices is minimized. We
seek to achieve the best alignment between the forests.

The genetic algorithm employed operates on permutation
matrices representing tree orderings within each model. It
initializes with a population of N1 pairs of permutations.
For each of the k1 folds of perturbed test data Xptest, we
generate original predictions ŷ1,i, ŷ2,i and perturbed pre-
dictions ŷp1,i, ŷp2,i for all trees i in M ′

1 and M ′
2. The

original predictions are used to compute the initial matrices
I
(
M ′

1,σ0
1
,M ′

1,σ0
1

)
, I

(
M ′

2,σ0
2
,M ′

2,σ0
2

)
, and perturbed predictions

for I
(
M ′

1,σ0
1
,M ′

2,σ0
2

)
.

Through iterative binary tournament selection, we apply
genetic operators, either one-point crossover or swap mutation,
with equal probability to evolve the population. In each
iteration, we compute I

(
M ′

1,σ1
,M ′

2,σ2

)
based on the new

permutations and compute the updated objective function. The
algorithm selects the top-performing permutation matrix pairs
for subsequent generations.

This process continues for a maximum of t1 iterations or
until the minimum objective value shows no improvement for
t2 consecutive iterations. To account for data variability, we
repeat this optimization across k1 folds of perturbed test data,
each subject to unique sample-wise perturbations.

The final output is the average of the minimized objective
values across all folds, serving as a quantitative measure of
structural similarity between M ′

1 and M ′
2. We then use this

similarity measure to infer the closeness between the original
models M1 and M2. The lower the score, the closer the two
models match in their configurations; i.e., the more similar
their node hierarchies and decision path layouts.

In this unit, we categorize the outputs from the absolute
value of the similarity score, which substantiates the structural
likeness of the two models. This unit provides a robust method
for assessing model similarity that goes beyond traditional
performance metrics, delineating the structural alignment of
decision-making processes between different RF models.

Let us denote the averaged minimum objective function
across all folds as SimM1,M2

. The outcomes for the second
unit test are as follows.

(i) If |SimM1,M2
| ≤ 85, the test passes.

(ii) If |SimM1,M2
| ≥ 112, the test fails.

(iii) Otherwise, the test is undetermined.
These threshold values of 85 and 112 are empirically de-
termined based on extensive experimentation across numerous
datasets and diverse RF models. Through benchmarking and
statistical analysis of similarity scores between known similar
and dissimilar model pairs, we establish these boundaries
to optimize the balance between false positives and false
negatives.

Prediction Ability Check Unit In this unit, we evaluate the
similarity of the prediction power between the two models
under perturbations of testing data. We compute the 10-fold
cross-validated MSE and R-squared for both M1 and M2 in
terms of Xptest. Consider the fraction of the MSE and R-
squared between models M1 and M2, and let us denote them
as FracMSEp and FracR2

p
. Then FracMSEp =

MSEp,M1

MSEp,M2

and FracR2
p

=
R2

p,M1

R2
p,M2

. The outcomes for this unit are as
follows.

(i) If FracMSEp < 1.22 and FracR2
p

< 1.03, the test
passes.

(ii) If FracMSEp
> 1.27 or FracR2

p
≥ 1.03, the test fails.

(iii) Otherwise, the test is undetermined.
These threshold values (1.22 and 1.27 for MSE fraction,
1.03 for R-squared fraction) are carefully calibrated through
extensive empirical testing across diverse datasets and model
configurations. The narrow margin for R-squared (1.03) re-
flects the sensitivity of this metric to model differences, while
the wider range for MSE accommodates its greater natural
variability under perturbations.

If condition (i) is satisfied, it indicates that both models
have learned stable and generalizable patterns from the training
data, with their decision-making processes robust to small
input perturbations. Conversely, if condition (ii) is met, the
models are considered dissimilar, leading to a rejection of
similarity. Condition (iii) remains inconclusive, precluding a
definitive assessment of model similarity.

Feature Importance Check Unit The Feature Importance
Check Unit serves as the final, critical component in our testing
pipeline, comparing the models’ interpretations of feature
significance. This unit employs Shapley values to quantify the
contribution of each feature to the models’ predictions.



To reliably estimate feature importance, we implement
a bootstrap approach. We first generate multiple resampled
datasets {X(b)

boot}Bb=1 from the original test data Xtest, where B
is the number of bootstrap iterations. Each resampled dataset is
subjected to perturbations to obtain the perturbed bootstrapped
datasets {X(b)

pboot}Bb=1.
For each bootstrap iteration b, we compute Shapley values

for both models M1 and M2. Let ϕ
(1,b)
i and ϕ

(2,b)
i denote

the Shapley values of feature i ∈ F (the set of all features)
for models M1 and M2, respectively, calculated from the
perturbed bootstrapped dataset X(b)

pboot. The averaged Shapley
values across all bootstrap iterations B for each feature i are
then denoted as ϕ̄

(1)
i , ϕ̄

(2)
i .

We then construct a similarity vector SVpboot, whose ele-
ments are defined by the ratio of the averaged Shapley values
for corresponding features in the two models

SVpboot,i =
ϕ̄
(1)
i

ϕ̄
(2)
i

.

To specifically quantify the overall agreement in feature
importance, we first rank features by their combined average
importance from both models. Subsequently, we select the
top 50% most important features, denoted as Ftop ⊂ F , and
calculate the aggregated similarity metric SV pboot as the mean
of the similarity ratios of these Ftop top features.

This aggregated similarity measure SV pboot offers an inter-
pretable indicator summarizing the concordance in how the
two models prioritize features. Values of SV pboot close to
1 signify comparable importance attributed to corresponding
features across models, while values significantly deviating
from 1 indicate disparities in feature interpretation, thereby
revealing intrinsic differences between the two models.

The outcomes of the final unit are as follows.
(i) If all values 0.5 ≤ SV pboot ≤ 2, the test passes.

(ii) If there exists values SV pboot < 0.5 or SV pboot > 2, the
test fails.

The threshold values of 0.5 and 2 are computed in the same
way as in prior tests.

C. Scoring for Test Units Outcomes
Through this comprehensive workflow, we determine model

similarity from multiple perspectives: individual tree struc-
tures, information representation, predictive capability, and
feature interpretation.
For each unit with multiple outcomes, we define a scoring
system. Let Ui denote the i-th unit in the test piepline, and let
Si be the score assigned to Ui. These individual unit scores are
then combined to produce the final binary output. The scoring
framework is as follows.

S1 =


1, if condition (i)
2, if condition (ii)
3, if condition (iii)

S2 =


1, if condition (i)
2, if condition (ii)
3, if condition (iii)

S3 =

{
1, if condition (i)
2, if condition (ii)

The final decision function f combines these outcomes to
produce a binary test result of the model pair (M1,M2) as
follows

f(S1, S2, S3) =



1, if (S1 = 1 and S2 = 1) or
(S1 = 1 and S2 = 3 and S3 = 1) or
(S1 = 3 and S2 = 1 and S3 = 1) or
(S1 = 3 and S2 = 3 and S3 = 1)

0, otherwise,
(2)

where 1 indicates that the model pair is classified as similar
and reliable, and 0 indicates dissimilarities.

The overall test pipeline is shown in Figure 1.

Figure 1: Pairwise Model Similarity Unit Testing Pipeline

D. Individual Model Testing Pipeline

Given a single trained RF model M and a dataset (X, y),
the goal is to evaluate the robustness and suitability of M .
To achieve this, we construct a diverse pool of synthetic RF
models in a preprocessing step called the RF Model Generator.
Specifically, we define a model spaceM asM = {M(n, d) :
n ∈ N , d ∈ D}, where M(n, d) represents a RF model with n
trees and maximum depth d, N is the set of candidate numbers
of trees, and D is the set of candidate maximum tree depths.

In this pipeline, the evaluated model M is held constant
while an extensive set of synthetic models is generated. Each
synthetic model is paired with M , forming a model pair that
undergoes the three unit tests, namely the Similarity Check
Unit, the Prediction Ability Check Unit, and the Feature
Impact Analysis Unit, as described in Section III-B. A new
scoring rule is then applied to quantify the percentage of model
pairs satisfying the specified conditions. This approach extends
the pairwise testing framework, enabling a comprehensive
assessment of M ’s performance under data perturbations.

From the space M, we uniformly at random select a
subset Msub ⊂ M consisting of N2 models which serve
as the comparison set for the incoming model M . We train
each M(n, d) ∈ Msub on (X, y). Each synthetic model
M ∈ Msub is paired with the incoming model M . The
pairwise comparison between M and each M follows the
same unit testing procedure as described in Section III-B.
To make every unit test robust to sampling variation, we
subject the test data to k2 independent perturbations. Let



X
(j)
ptest denote the j-th perturbed version of the original test

set Xtest, with j = 1, . . . , k2. For each synthetic comparator
M , we run the three unit tests on every fold, obtaining
per-fold similarity, prediction ratio, and feature impact stat-
istics, Sim

(j)

M,M
, F rac

(j)
R2

p
(M,M), F rac

(j)
MSEp

(M,M), and

SV
(j)

pboot(M,M). We then aggregate over folds by simple av-
eraging, and to this end, we have SimM,M , FracR2

p
(M,M),

FracMSEp
(M,M), and SV pboot(M,M). The outcome of

the test g
(
S1(M,M), S2(M,M), S3(M,M)

)
is based on the

decision function g specified in rule (3) below. Aggregating
the outcomes, we categorize model M as either PASS or FAIL.

We now score the outcomes from each unit, starting with
the Similarity check unit:

(i) If more than 30% of pair-wise comparisons have
SimM,M ≤ 89, mark S1 = 1.

(ii) Otherwise, mark S1 = 0.
The outcomes for prediction-ability check unit are:

(i) If more than 39% of comparisons have
FracR2

p
(M,M) < 1.10 and more than 42% of

comparisons have FracMSEp(M,M) < 1.53, then
S2 = 1.

(ii) Otherwise, S2 = 0.
The outcomes for the feature-importance check unit are:

(i) If more than 45% of comparisons have all values
SV pboot(M,M) ∈ [0.5, 2], mark S3 = 1.

(ii) Otherwise, mark S3 = 0.
The final decision function g is then defined as

g(S1, S2, S3) =


1, if (S1 + S2 = 2)

or (S1 + S2 = 1 and S3 = 1),

0, otherwise,
(3)

where value g = 1 implies the test passes, and g = 0 it fails. It
is similar to Figure 2 but the values are different. The scheme
is shown in Figure 2.

Figure 2: Single Model Goodness of Fit Unit Testing Pipeline

IV. NUMERICAL EXPERIMENTS

A. Implementation and Evaluation Datasets
This section presents the results of our framework, detailing

the datasets used to evaluate our model testing pipeline and
interpreting the outcomes.

In the following experiments, we set the parameters
and constants values as follows. For pairwise
testing, we build the paired models (M1,M2) by
randomly selecting the number of trees from the set
{2, 3, 4, 5, 8, 10, 12, 15, 16, 20, 25, 30, 45, 50, 75, 100, 200, 500}
and the maximum depth of each tree from the set
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 25, 50}. For Algorithm 1,
we set pperturb = 0.05, q0 = 10, c = 1.15, and paired
(f1, f2) ∈ {(1, 0), (0, 1), (0.5, 0.5)}.

For single model testing, we take care of synthetic com-
parison model selection through the number of trees and tree
depth characteristics of RF. We set N = {1, 2, 3, 5, 7, 10, 15,
20, 25, 50, 75, 100, 200, 500}, D = {1, 2, 3, 5, 10, 15, 25, 50},
and N2 = 1,000 for all of the following experiments. The
details of how the pools of models for both cases are provided
next.

We set the following parameters for the Similarity Check
Unit. We initialize the KNN-based MI estimator with k0 = 5
neighbors, select an initial population of N1 = 5 permutation
pairs, run the algorithm over k1 = 100 folds of perturbed test
data with each fold containing k = 100 samples, and allow the
genetic algorithm to run for up to t1 = 150 iterations or until
it detects no improvement over t2 = 25 consecutive iterations.

In the Feature Importance Check unit, we compute Shapley
values for each model in the n2 = 25 bootstrapped and
perturbed test datasets.

We then evaluate our approach using data from several real-
world datasets and their simulated offshoots: Friedman #1 [9],
Borehole [12], SARCOS [27], and Satellite Drag [15]. Table
I shows the sample count and number of model pairs tested
per dataset.

The principle for choosing such datasets is their variabil-
ity in complexity, dimensionality, and feature characteristics,
allowing us to comprehensively assess the capabilities of our
approach across diverse modeling scenarios, from controlled
synthetic data to complex real-world problems, from low-
dimension to high-dimension spaces, including different fea-
ture types and interactions between features. This comprehens-
ive evaluation can prove both strengths and limitations of our
testing system.

The ground truths regarding whether pairs of RF models
are structurally similar or dissimilar or one RF model is a
good fit for a given dataset or not are known by design. To
establish a robust reference, an initial RF model demonstrating
goodness-of-fit (GOF) is designed for each dataset. This design
process involves careful data splitting, iterative hyperparameter
tuning guided by Out-of-Bag error on the training set, and
GOF evaluation on the test set using Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Adjusted
R-squared.

Once this benchmark GOF model is established for a data-
set, we create a “pool of Ground Truth Good models” by tak-
ing the baseline GOF model and introducing slight, controlled
variations to its tree-structure hyperparameters nestimators,
maxdepth, minsamples_split, minsamples_leaf and maxfeatures.
Consequently, models within this pool, or between this pool



and the baseline, are considered “similar” due to their closely
related configurations.

A parallel procedure is employed to construct a “pool of
Ground Truth Poor models.” This starts with RF models iden-
tified as poorly performing (based on the same GOF metrics by
showing an opposite trend) or models deliberately configured
with suboptimal hyperparameters. These initial poor models
also undergo slight structural tuning to generate a diverse pool.
To this end, the pool of models that our pairs are randomly
picked from are built, resulting in number of trees from the
set {2, 3, 4, 5, 8, 10, 12, 15, 16, 20, 25, 30, 45,
50, 75, 100, 200, 500} and the maximum depth of each tree
from the set {1, 2, 3, 4, 5, 6, 8,
10, 12, 15, 18, 20, 25, 50}, as mentioned above. The same
approach applies to the one-model case.

The subsequent experiments are conducted under the as-
sumption that these structural cues are unknown, and a
sampled pair (M1,M2) is labeled

Pass = 1 ⇐⇒ M1,M2 ∈ G and ∥θ(M1)− θ(M2)∥∞ ≤ δ,

where G denotes the pool of “ground-truth good” models,
each dataset’s benchmark GOF model and its controlled hyper-
parameter variants, while θ(·) stacks the test metrics, and the
tolerance is fixed at δ = 0.075.

The computational time depends on both the dataset and
forest sizes. For instance, using the Friedman dataset, when
n0 = 15, the full pipeline completes in under 3 minutes; when
n0 = 50, it takes approximately 10 minutes; and when n0 =
75 or larger, the process requires roughly 20-45 minutes per
pair.

Characteristic Friedman #1BoreholeSARCOS Satellite

# of Features 5 8 21 8
# of Samples 1,000 10,000 44,484 1,000
Target depends on
feature interactions Yes No Yes Yes

Data Types Synthetic Synthetic Real Real
Feature Types Cont. Cont., Int. Cont. Cont., Cat., Int.
# Pairs of Models in Sec. IV-B 500 500 200 100
# Pairs of Models in Sec. V-A 500 250 100 100

Table I: Regression Dataset Variability

B. Evaluation Results on Pairwise Model Unit Testing

To comprehensively synthesize the evaluation, we sum-
marize the results across all four datasets in Table II. The
score Si is computed according to the rule given in (2).
The Counts column indicates the number of pairs that pass
the test out of the total pairs evaluated at that unit, and
the Percentage column reports the corresponding value. Ours
Final corresponds to the final decision of our methodology,
while Precision and Recall are performance metrics assessing
our prediction against the ground truth. The Similarity Check
Unit, placed at the beginning of the testing pipeline, employs
MI alongside an optimization-based permutation strategy to
determine the optimal alignment between the tree structures of

two RF models. Leveraging MI in this context is statistically
well-founded, as it effectively captures nonlinear relationships
between tree predictions, a complex characteristic otherwise
challenging to quantify. Empirical evidence from Table II
strongly supports the efficiency of this step. Notably, signi-
ficant proportions of model pairs, namely 58.6% (Friedman),
41.0% (Borehole), 21.5% (SARCOS), and 39.0% (Satellite),
are correctly classified as dissimilar solely through this initial
Similarity Check Unit. These results closely align with the
ground truth dissimilarity rates (64.8%, 43.6%, 60.0%, and
59.0%, respectively). Thus, the Similarity Check Unit alone
can reliably filter out a majority of dissimilar pairs early on,
which proves its necessity.

Following this initial filtering, the Prediction Ability Check
Unit further refines the assessment by examining whether
models previously labeled as “similar” or “undetermined” ac-
cording to their structural similarities also produce consistent
predictive results. As observed in Table II, the proportion
of pairs that fulfill the criteria of the Prediction Unit varies
substantially across datasets, from as low as 24.2% (Friedman)
to as high as 97.5% (Borehole). This variability underscores
the Prediction Unit’s critical role in capturing nuanced dif-
ferences in predictive performance that structural similarity
alone may miss. Consequently, the Prediction Unit is not
merely supplemental but integral, significantly enhancing the
reliability and discriminative power of the overall pipeline.

The third unit addresses cases in which the rigorous require-
ments of the first two units, namely structural and predictive
alignments, may inadvertently label truly similar model pairs
as undetermined. By focusing on the alignment of feature
importance, this unit provides an additional perspective on
model similarity, reflecting real-world considerations regarding
which features are deemed influential and which can be
disregarded. As indicated by the high percentages of passing
pairs (97.4%, 72.5%, 83.3%, and 68.8%, respectively), this
unit effectively rescues many pairs that do not strictly satisfy
both prior tests, confirming their practical equivalence even
when strict structural or predictive criteria are not fully met.

Collectively, arranging these three units sequentially as
presented forms a comprehensive and coherent evaluation
pipeline. The average precision and recall across all datasets
are 0.915 and 0.8475, respectively, with standard deviations of
0.0443 and 0.0850. These results demonstrate the robustness
and consistency of our methodology in reliably distinguishing
similar from dissimilar RF model pairs under diverse scen-
arios.

Among the four benchmarks, the SARCOS dataset presents
the most challenging scenario for our pairwise model sim-
ilarity pipeline, yielding the lowest recall (0.76) and the
second-lowest precision (0.89). This suggests that a higher
number of truly similar model pairs are being missed by our
methodology on this dataset. Two primary factors contribute
to this performance drop. First, SARCOS is characterized
by its high dimensionality, with 21 continuous input fea-
tures, more than twice that of the next largest dataset, and
strong cross-term effects induced by the underlying robot-



Similarity Unit Prediction Unit Feature Unit Ours Final Ground Truth Precision Recall

Dataset Si Counts Percentage (%) Counts Percentage (%) Counts Percentage (%) Counts Counts

Friedman
1 138/500 27.6 50/207 24.2 148/152 97.4

176/500 165/500 0.87 0.932 293/500 58.6 27/207 13.0 4/152 2.6
3 69/500 13.8 130/207 62.8 — —

Borehole
1 250/500 50.0 268/275 97.5 37/51 72.5

282/500 301/500 0.97 0.912 205/500 41.0 0/275 0.0 14/51 27.5
3 45/500 9.0 7/275 2.5 — —

SARCOS
1 87/200 43.5 45/157 28.6 50/60 83.3

80/200 94/200 0.89 0.762 43/200 21.5 67/157 42.7 10/60 16.7
3 70/200 35.0 45/157 28.7 — —

Satellite
1 27/100 27.0 38/61 62.3 22/32 68.8

41/100 48/100 0.93 0.792 39/100 39.0 10/61 16.4 10/32 31.2
3 34/100 34.0 13/61 21.3 — —

Table II: Quantitative results summarizing the number and percentage of pairwise model comparisons that pass each unit test
in the order of their application.

Similarity Unit Prediction Unit Feature Unit Ours Final Ground Truth Precision Recall

Dataset Si Counts Percentage (%) Counts Percentage (%) Counts Percentage (%) Counts Counts

Friedman 1 178/500 35.6 210/500 42.0 61/332 18.4
89/500 114/500 0.93 0.73

0 322/500 64.4 290/500 58.0 271/332 81.6

Borehole 1 96/250 38.4 113/250 45.2 158/169 93.5
178/250 155/250 0.85 0.97

0 154/250 61.6 137/250 54.8 11/169 6.5

SARCOS 1 21/100 21.0 37/100 37.0 19/32 59.4
32/100 39/100 0.78 0.64

0 79/100 79.0 63/100 63.0 13/32 40.6

Satellite 1 35/100 35.0 43/100 43.0 35/42 83.3
53/100 41/100 0.72 0.93

0 65/100 65.0 57/100 57.0 7/42 16.7

Table III: Quantitative results summarizing the number and percentage of synthetic pairwise models that pass each unit test in
the order of their application.

arm dynamics. Estimating MI between tree predictions in
such a high-dimensional and complex setting can be noisy.
Consequently, the initial Similarity Check Unit tends to label
fewer pairs as similar (21.5%) than the ground-truth similarity
rate (47.0%), as optimal tree alignments become less clear-cut
and the “signal” of structural similarity can be obscured by
individual tree variations when dealing with many correlated,
or less informative features. Second, the target values in
SARCOS span six orders of magnitude, which means that even
small absolute errors can significantly inflate the perturbed-to-
baseline ratios used by the Prediction Unit. As a result, several
structurally matched RF models fail the prediction thresholds,
as minor structural changes can lead to more pronounced
functional differences in this challenging space. This in turn,
leaves fewer opportunities for the Feature Unit to subsequently
“rescue” these pairs. Collectively, these characteristics make
the SARCOS dataset the toughest to deal with.

False Positives (FP) and False Negatives (FN) are inherent
challenges in such a comparison task. Close inspection of mis-
classified pairs reveals specific structural patterns contributing
to these errors. Most FPs occur when both compared RFs are
large (more than 100 trees) but very shallow (depth less than
or equal to 3). Such models tend to share many high-level
split rules. Consequently, their tree-wise MI matrix can appear
aligned even when their deeper, more detailed structures differ,
potentially causing the Similarity Check Unit to incorrectly
accept them as similar. The Feature Unit, designed to be more
tolerant to “rescue” pairs, also inadvertently contribute to FPs

if it identifies feature importance alignment between these
structurally different but superficially similar shallow models.

Conversely, FNs, which appear to be more prevalent in
datasets like SARCOS, predominantly arise from medium-
sized forests (30–75 trees) with moderate depths (10-15). The
permutation search in the Similarity Unit aligns their trees
well, producing a PASS. Yet each forest is trained with its
own bootstrap sample and feature subsampling stream, so
their terminal leaf means are not identical. Because SARCOS
targets vary by several orders of magnitude, even a small
leaf mean shift pushes the perturbed-to-baseline error ratios
above the hard fail limits in the Prediction Unit. Therefore,
the pipeline stops before the Feature Unit can review the pair
and rescue the outcome. However, even with the nature of
FNs and FPs presence, our pipeline achieves an overall high
precision and recall.

In this section, we present the results of our pipeline for
evaluating the quality of individual RF models. As shown in
Table III, we evaluate 500, 250, 100, and 100 single models
on the respective datasets. All four datasets are assessed using
a shared pool of synthetic RF models generated as described
in Section IV-A. The score Si is computed according to the
rule given in (3).

In contrast to the pairwise similarity testing pipeline, where
the Similarity Unit alone effectively filters model pairs, eval-
uating the quality of an individual model requires a more
intricate procedure. This is due to the additional randomness
introduced by synthetic model pairing, which makes it con-



Similarity Unit Prediction Unit Feature Unit Ours Final

Friedman Si Counts Percentage (%) Counts Percentage (%) Counts Percentage (%) Counts Precision Recall

Without
Similarity Unit

1 — — 157/500 31.4 205/286 71.7
205/500 0.63 0.782 — — 214/500 42.8 81/286 28.3

3 — — 129/500 25.8 — —

Without
Prediction Unit

1 138/500 27.6 — — 165/207 79.7
165/500 0.79 0.792 293/500 58.6 — — 42/207 20.3

3 69/500 13.8 — — — —

Without
Feature Unit

1 138/500 27.6 50/207 24.2 — —
28/500 0.93 0.162 293/500 58.6 27/207 13.0 — —

3 69/500 13.8 130/207 62.8 — —

Table IV: Quantitative ablation tests on the Friedman dataset illustrate the impact of each unit in the overall configuration.

siderably more challenging to confidently filter the pairs as in
the pairwise cases. Consequently, the Similarity and Prediction
Units are allotted equal importance. As shown in Table III,
the percentages of models attaining a score of 1 in these two
units are generally comparable. For instance, in the Borehole
test, 38.4% of the evaluated models exhibit structure-level
similarity with their synthetic pairings, while 45.2% demon-
strate prediction-level similarity. However, our methodology’s
final decision rate is significantly higher, at 71.2%, indicating
that the third (Feature) unit contributes essential additional
discriminatory power not captured by the first two units alone.
Given that the Similarity and Prediction Units combined are
insufficient to conclusively assess a model’s quality on a given
dataset, it remains beneficial and reliable to initially filter out
dissimilar synthetic pairs, thereby again reducing the workload
required by the Feature Unit.

After applying the complete unit testing pipeline, the ef-
fectiveness of our methodology is confirmed by consistently
achieving high values of precision or recall, typically around or
above 90% across datasets (see Table III). It is expected that
the overall performance may be slightly lower compared to
pairwise model testing because the individual models under
evaluation are entirely black-box and assessed without an
initial baseline or comparative model. Additionally, since all
four datasets share the same synthetic-model pool, dataset-
specific characteristics might influence evaluation outcomes.
Nonetheless, these results demonstrate that our pipeline effect-
ively balances precision and recall, validating its capability in
reliably identifying high-quality individual RF models.

V. ABLATION STUDY

To systematically investigate the relative importance of each
evaluation unit within our proposed framework, we conduct
an ablation study using the Friedman dataset for both pair-
wise and single model testing pipelines. This study involves
sequentially removing each of the three units and examining
the resultant changes in performance metrics. The values used
for testing are identical to those presented in Table III.

A. Evaluation Results on Single Model Unit Testing

B. Pairwise Model Case Study

Table IV exhibits the results. By isolating each unit’s
contribution to the pipeline’s effectiveness, the results indicate
that omitting any single unit leads to untrustworthy decisions.

The Ours Final column shows the final decision when one
unit is omitted. Removing the Similarity Unit substantially
simplifies computational complexity, as this unit contributes
the most to overall computation time. However, the absence of
assessing the tree-structure alignment via MI should signific-
antly impact accuracy, as evidenced by a decrease in evaluation
metrics from precision and recall values of 0.87 and 0.93 to
0.63 and 0.78, respectively. Additionally, the final number of
pairs classified as similar increases markedly, indicating that
without the structural evaluation, some pairs with intrinsically
different decision processes but similar predictions and feature
importance profiles are incorrectly identified as similar.

The Similarity Unit dominates the runtime: for 500 pairs
its permutation-based search accounts for roughly 43 hours,
and the cost rises steeply once each forest exceeds 50 trees.
Dropping this unit therefore would yield a large speed-up,
but at an unacceptable price as described above. Because the
pipeline’s primary objective is reliable model pre-checking, we
should retain the Similarity Unit.

When the Prediction Unit is omitted, both precision and
recall metrics drop to 0.79, reflecting a moderate yet insuffi-
cient performance. This aligns with the intended role of the
Prediction Unit, which complements the structural assessments
from the Similarity Unit by explicitly evaluating prediction
concordance.

Finally, excluding the Feature Importance Unit dramatically
reduces recall to 0.16, despite retaining a high precision of
0.93. This significant reduction demonstrates that, the Simil-
arity and Prediction Units provide overly strict checks. Without
assessing practical alignment in terms of feature prioritization,
the pipeline fails to identify several model pairs that demon-
strate strong task-specific feature importance alignment.

In all, when we drop the Similarity Unit, precision sinks
to 0.63 for Friedman. The pipeline now declares many extra
pairs as “similar,” inflating the false positive count. Without
a structural screen based on MI, two forests that share only
superficial prediction patterns slip through, so precision is the
first casualty while recall is still within the fine range.

Conversely, omitting the Feature Unit drives recall down to
0.16 while precision stays high. Here, the earlier structural and
predictive checks act as a double gate: if either one blocks a
genuinely similar pair, no later unit can recover it. The feature-
level comparison serves as a rescuer, saving pairs whose tree
order or output scale differs slightly yet rely on the same



Similarity Unit Prediction Unit Feature Unit Ours Final

Friedman Si Counts Percentage (%) Counts Percentage (%) Counts Percentage (%) Counts Precision Recall

Without
Similarity Unit

1 — — 210/500 42.0 128/500 25.6
102/500 0.77 0.69

0 — — 290/500 58.0 372/500 74.4

Without
Prediction Unit

1 178/500 35.6 — — 199/500 39.8
136/500 0.55 0.66

0 322/500 64.4 — — 301/500 60.2

Without
Feature Unit

1 178/500 35.6 210/500 42.0 — —
25/500 0.82 0.20

0 322/500 64.4 290/500 58.0 — —

Table V: Quantitative ablation tests on the Friedman dataset illustrate the impact of each unit in the overall configuration.

explanatory cues. Its absence therefore manifests itself as a
surge in FNs.

C. Single Model Case Study

In the single model unit testing pipeline (results presented in
Table V), the three units function as complementary compon-
ents that together form a robust evaluation framework, like
the angles of a pyramid, each providing essential structural
support. By isolating each unit’s contribution to the pipeline’s
effectiveness, the results indicate that omitting any single unit
significantly compromises the integrity of the methodology.
The Ours Final column shows the final decision when one
unit is omitted. When we systematically removed individual
units, the precision of our classification dropped substantially
from the original 0.93 to 0.77, 0.55, and 0.82, respectively.
These results directly demonstrate that more Fail models
are misclassified as Pass when the pipeline is incomplete.
This empirical evidence strongly validates our multi-faceted
approach to model evaluation.

VI. CONCLUSION

In this paper, we introduce a RF model-oriented unit testing
approach that examines models on an all-rounded perspective,
from their intrinsic tree structures to their outlier performance.
We present a comprehensive and systematic pipeline for evalu-
ating the quality of RF models, leveraging a multi-unit testing
approach comprising structural similarity, predictive consist-
ency, and feature impact analysis. Extensive empirical analyses
demonstrate that our testing pipeline reliably differentiates
models, efficiently identifies subtle but meaningful differences,
and robustly assesses individual RF model quality, providing
a valuable toolkit for practitioners deploying RF models in
high-stakes applications.

Future work could focus on extending this framework to
other model classes beyond RFs and developing dynamic,
dataset-oriented thresholds that adapt to specific data charac-
teristics, enabling greater flexibility across varying application
domains and model complexities.
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APPENDIX A
APPROXIMATING MUTUAL INFORMATION WITH

K-NEAREST NEIGHBORS

For continuous random variables X and Y , the MI I(X,Y )
is defined as

I(X,Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (4)

where p(x, y) is the joint probability density function of X
and Y , and p(x) and p(y) are the marginal probability density
functions of X and Y , respectively.

Exact calculation of MI for continuous variables is often
intractable. One approximation method is the KNNs approach,
introduced by Kozachenko and Leonenko [8].

The KNN method for MI estimation is based on the idea
of estimating local densities around data points. For a set of
N points {xi}Ni=1 in Rd, we find the distance ϵk,p from each
point xi to its k-th nearest neighbor in the lp space (p ≥ 1).
The local density estimate at xi is then given by

f̂X(xi) =
k/N

Vp,d(ϵk,p)d
(5)

where Vp,d(r) is the volume of the lp-ball of radius r in
Rd. The idea is to find a point x′

k close to the k-th nearest
neighbor xk of xi, with distance ∥x′

k − xk∥ ≤ τϵk,p, where
τ is a small constant. This approximation method introduces
a bounded approximation error but can significantly improve
computational efficiency.

This approximation is based on the assumption that the k
nearest neighbors of a point provide a good estimate of the
local density around that point. In regions of high density,
the k nearest neighbors will be closer, resulting in a smaller
volume and thus a higher density estimate.

From this density estimate, we can approximate the entropy

Ĥ(X) = − 1

N

N∑
i=1

[log f̂X(xi)]. (6)

In our work, we leverage this KNN-based MI estimation
technique to quantify the structural similarity between two
RF models. This approach offers a computationally efficient
alternative to traditional Kernel Density Estimation techniques,
making it particularly suitable for comparing complex en-
semble models like RFs.


