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Abstract
The mini-batch stochastic gradient descent (SGD)
algorithm is widely used in training machine
learning models, in particular deep learning mod-
els. We study SGD dynamics under linear regres-
sion and two-layer linear networks, with an easy
extension to deeper linear networks, by focus-
ing on the variance of the gradients, which is the
first study of this nature. In the linear regression
case, we show that in each iteration the norm of
the gradient is a decreasing function of the mini-
batch size b and thus the variance of the stochastic
gradient estimator is a decreasing function of b.
For deep neural networks with L2 loss we show
that the variance of the gradient is a polynomial
in 1{b. The results back the important intuition
that smaller batch sizes yield lower loss function
values which is a common believe among the re-
searchers. The proof techniques exhibit a relation-
ship between stochastic gradient estimators and
initial weights, which is useful for further research
on the dynamics of SGD. We empirically provide
further insights to our results on various datasets
and commonly used deep network structures.

1. Introduction
Deep learning models have achieved great success in a va-
riety of tasks including natural language processing, com-
puter vision, and reinforcement learning (Goodfellow et al.,
2016). Despite their practical success, there are only limited
studies of the theoretical properties of deep learning; see
survey papers (Sun, 2019; Fan et al., 2019) and references
therein. The general problem underlying deep learning mod-
els is to optimize (minimize) a loss function, defined by the
deviation of model predictions on data samples from the
corresponding true labels. The prevailing method to train
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deep learning models is the mini-batch stochastic gradient
descent (SGD) algorithm and its variants (Bottou, 1998;
Bottou et al., 2018). SGD updates model parameters by
calculating a stochastic approximation of the full gradient
of the loss function, based on a random selected subset of
the training samples called a mini-batch.

It is well-accepted that selecting a large mini-batch size
reduces the training time of deep learning models, as com-
putation on large mini-batches can be better parallelized on
processing units. For example, Goyal et. al. (Goyal et al.,
2017) scale ResNet-50 (He et al., 2016) from a mini-batch
size of 256 images and training time of 29 hours, to a larger
mini-batch size of 8,192 images. Their training achieves
the same level of accuracy while reducing the training time
to one hour. However, noted by many researchers, larger
mini-batch sizes suffer from a worse generalization abil-
ity (LeCun et al., 2012; Keskar et al., 2017). Therefore,
many efforts have been made to develop specialized train-
ing procedures that achieve good generalization using large
mini-batch sizes (Hoffer et al., 2017; Goyal et al., 2017).
Smaller batch sizes have the advantage of allegedly offering
better generalization (at the expense of a higher training
time).

We hypothesize that smaller sizes lead to lower training loss
and, unfortunately, decrease stability of the algorithm. The
latter follows from the fact that the smaller is the batch size,
more stochasticity and volatility is introduced. After all,
if the batch size equals to the number of samples, there is
no stochasticity in the algorithm. To this end, we conjec-
ture that the variance of the gradient in each iteration is a
decreasing function of the mini-batch size. The conjecture
is the focus of the work herein. We are able to prove it in
the convex linear regression case and to show significant
progress in a two layer neural network setting with sam-
ples based on a normal distribution. In this case we show
that the variance is a polynomial in the reciprocal of the
mini-batch size and that it is decreasing for large enough
mini-batch sizes. The increased variance as the mini-batch
size decreases should also intuitively imply convergence
to lower training loss values and in turn better prediction
and generalization ability (these relationships are yet to be
confirmed analytically; but we provide empirical evidence
to their validity).
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Another line of research focuses on how to choose an op-
timal mini-batch size based on different criteria (Smith &
Le, 2017; Gower et al., 2019). However, these papers make
strong assumptions on the loss function properties (strong or
point or quasi convexity, or constant variance near stationary
points) or about the formulation of the SGD algorithm (con-
tinuous time interpretation by means of differential equa-
tions). The statements are approximate in nature and thus
not mathematical claims. They also focus on convergence
and generalization while our goal is variance. The theoreti-
cal results regarding the relationship between the mini-batch
size and the performance (variance, loss, generalization abil-
ity, etc.) of the SGD algorithm applied to general machine
learning models are still missing. The work herein partially
addresses this gap by showing the impact of the mini-batch
size on the variance of gradients in SGD.

In the linear regression case, we show that in each iteration
the norm of any linear combination of sample-wise gradi-
ents is a decreasing function of the mini-batch size b. As
a special case, the variance of the stochastic gradient esti-
mator and the full gradient at the iterate in step t are also
decreasing functions of b at any iteration step t. In addi-
tion, the proof provides a recursive relationship between the
norm of gradients and the model parameters at each itera-
tion. This recursive relationship can be used to calculate any
quantity related to the stochastic gradient or full gradient
at any iteration with respect to the initial weights. We give
structural results and not explicit formulas which are impos-
sible to obtain. For the two-layer linear neural network with
L2-loss and samples drawn from a normal distribution, we
show that in each iteration step t the trace of any product
of the stochastic gradient estimators and weight matrices is
a polynomial in 1{b with coefficients a sum of products of
the initial weights. As a special case, the variance of the
stochastic gradient estimator is a polynomial in 1{b without
the constant term and therefore it is a decreasing function
of b when b is large enough. The results can be easily ex-
tended to general deep linear networks. As a comparison,
other papers that study theoretical properties of two-layer
networks either fix one layer of the network, or assume the
over-parameterized property of the model and they study
convergence, while our paper makes no such assumptions
on the model and we study variance with respect to the
mini-batch size. The proof also reveals the structure of the
coefficients of the polynomial, and thus serving as a tool
for future work on proving other properties of the stochastic
gradient estimators.

The proofs are involved and require several key ideas. The
main one is to show a more general result than it is necessary
in order to carry out the induction. The induction is not only
on time step t but also on the batch size with the latter one
being tricky to handle. New concepts and definitions are
introduced in order to handle the more general case. Along

the way we show a result of general interest establishing
expectation of several rank one matrices sampled from a
normal distribution intertwined with constant matrices.

In conclusion, we study the dynamics of SGD under linear
regression and a two-layer linear network setting by focus-
ing on the decreasing property of the variance of stochastic
gradient estimators with respect to the mini-batch size. The
proof techniques can also be used to derive other proper-
ties of the SGD dynamics in regard to the mini-batch size
and initial weights. To the best of authors’ knowledge, the
work is the first one to theoretically study the impact of
the mini-batch size on the variance of the gradient, under
mild assumptions on the network and the loss function. We
support our theoretical results by experiments. We further
experiment on other state-of-the-art deep learning models
and datasets to empirically show the validity of the conjec-
tures about the impact of mini-batch size on average loss,
average accuracy and the generalization ability of the model.

The major contributions of this paper are as follows.

• For linear regression, we show that the norm of any
number of linear combinations of the coordinates of
the gradient is a decreasing function of the mini-batch
size (Theorem 2). As a special case, the variance of
the stochastic gradient estimators is also a decreasing
function of the mini-batch size, for all iterations and
all choices of learning rates (Corollary 1) that are inde-
pendent of the mini-batch size.

• For a two-layer linear network, we show that any non-
negative trace of the product of weight matrices and
stochastic gradient estimators is a decreasing function
of the mini-batch size for a large enough value. Here
samples are drawn from a normal distribution. As a
special case, the variance of the stochastic gradient es-
timators is also a decreasing function for large enough
mini-batch size, for all iterations and all choices of
learning rates (Theorem 4) that are independent of the
mini-batch size. The proof can be easily extended to
more than two layers.

• In the two-layer network we also show that the variance
is a polynomial in 1{b. In order to establish all of the
results we design a new proof technique where the
main idea is to show a more general result than only
considering variance in order to apply induction in a
non-trivial way.

• We verify the theoretical results on various datasets
and provide further understanding. We further em-
pirically show that the results extend to other widely
used network structures and hold for all choices of
the mini-batch sizes. We also empirically verify that,
on average, in each iteration the loss function value
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and the generalization ability (measured by the gap
between accuracy on the training and test sets) are all
decreasing functions of the mini-batch size.

The rest of the manuscript is structured as follows. In Sec-
tion 2 we review the literature while in Section 3 we present
the theoretical results on how mini-batch sizes impact the
variance of stochastic gradient estimators, under different
models including linear regression and deep linear networks.
Section 4 introduces the experiments that verify our the-
orems and provide further insights into the impact of the
mini-batch sizes on SGD performance. We defer the proofs
of the theorems and other technical details to Appendix A
and experimental details to Appendix B.

2. Literature Review
Stochastic gradient descent type methods are broadly used in
machine learning (Bottou, 1991; LeCun et al., 1998; Bottou
et al., 2018). The performance of SGD highly relies on the
choice of the mini-batch size. It has been widely observed
that choosing a large mini-batch size to train deep neural
networks appears to deteriorate generalization (LeCun et al.,
2012). This phenomenon exists even if the models are
trained without any budget or limits, until the loss function
value ceases to improve (Keskar et al., 2017). One expla-
nation for this phenomenon is that large mini-batch SGD
produces “sharp” minima that generalize worse (Hochreiter
& Schmidhuber, 1997; Keskar et al., 2017). Specialized
training procedures to achieve good performance with large
mini-batch sizes have also been proposed (Hoffer et al.,
2017; Goyal et al., 2017).

It is well-known that SGD has a slow asymptotic rate of
convergence due to its inherent variance (Nesterov, 2013).
Variants of SGD that can reduce the variance of the stochas-
tic gradient estimator, which yield faster convergence, have
also been suggested. The use of the information of full gra-
dients to provide variance control for stochastic gradients
is addressed in (Johnson & Zhang, 2013; Roux et al., 2012;
Shalev-Shwartz & Zhang, 2013). The works in (Lei et al.,
2017; Li et al., 2014; Schmidt et al., 2017) further improve
the efficiency and complexity of the algorithm by carefully
controling the variance.

There is prior work focusing on studying the dynamics of
SGD. Neelakantan et. al. (Neelakantan et al., 2015) propose
to add isotropic white noise to the full gradient to study the
“structured” variance. The works in (Li et al., 2017; Mandt
et al., 2017; Jastrzebski et al., 2017) connect SGD with
stochastic differential equations to explain the property of
converged minima and generalization ability of the model.
Smith and Le (Smith & Le, 2017) propose an “optimal”
mini-batch size which maximizes the test set accuracy by
a Bayesian approach. The Stochastic Gradient Langevin

Dynamics (SGLD, a variant of SGD) algorithm for non-
convex optimization is studied in (Zhang et al., 2017; Mou
et al., 2018).

In most of the prior work about the convergence of SGD, it is
assumed that the variance of stochastic gradient estimators
is upper-bounded by a linear function of the norm of the
full gradient, e.g. Assumption 4.3 in (Bottou et al., 2018).
One exception is (Gower et al., 2019) which gives more
precise bounds of the variance under different sampling
methods. These bounds are still dependent on the model
parameters at the corresponding iteration. To the best of the
authors’ knowledge, there is no existing result connecting
the variance of stochastic gradient estimators with the initial
weights and the mini-batch size. This paper partially solves
this problem.

3. Analysis
Mini-batch SGD is a lighter-weight version of gradient de-
scent. Suppose that we are given a loss function Lpwqwhere
w is the collection (vector, matrix, or tensor) of all model
parameters. At each iteration t, instead of computing the full
gradient ∇wLpwtq, SGD randomly samples a mini-batch
set Bt that consists of b “ |Bt| training instances and sets

wt`1 Ð wt ´ αt∇wLBtpwtq,

where the positive scalar αt is the learning rate (or step size)
and ∇wLBtpwtq denotes the stochastic gradient estimator
based on mini-batch Bt.

An important property of the stochastic gradient estima-
tor ∇wLBtpwtq is that it is an unbiased estimator, i.e.
E∇wLBtpwtq “ ∇wLpwtq, where the expectation is taken
over all possible choices of mini-batch Bt. However, it is
unclear what is the value of

var p∇wLBtpwtqq fi E }∇wLBtpwtq}
2
´}E∇wLBtpwtq}

2
.

Intuitively, we should have

var p∇wLBtpwtqq 9
n2

b
var p∇wLpwtqq

where n is the number of training samples and stochastic-
ity on the right-hand side comes from mini-batch samples
behind wt. The works in (Smith & Le, 2017; Gower et al.,
2019) also point out this relationship, but a rigorous proof
is missing. In addition, even the quantities ∇wLpwtq and
var p∇wLpwtqq are still challenging to compute as we do
not have direct formulas of their precise values. Besides, as
we choose different b’s, their values are not comparable as
we end up with different wt’s.

A plausible idea to address these issues is to represent
E∇wLBtpwtq and var p∇wLBtpwtqq using the fixed and
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known quantities w0, b, t, and αt. In this way, we can fur-
ther discover the properties, like decreasing with respect
to b, of E∇wLBtpwtq and var p∇wLBtpwtqq. The biggest
challenge is how to connect the quantities in iteration t with
those of iteration 0. This is similar to discovering the prop-
erties of a stochastic differential equation at time t given
only the dynamics of the stochastic differential equation and
the initial point.

In this section, we address these questions under two set-
tings: linear regression and a deep linear network. In Sec-
tion 3.1 with a linear regression setting, we provide explicit
formulas for calculating any norm of the linear combina-
tion of sample-wise gradients. We therefore show that the
var p∇wLBtpwtqq is a decreasing function of the mini-batch
size b. In Section 3.2 with a deep linear network setting and
samples drawn from a normal distribution, we show that any
trace of the product of weight matrices and stochastic gradi-
ent estimators is a polynomial in 1{b with finite degree. We
further prove that var p∇wLBtpwtqq is a decreasing function
of the mini-batch size b ą b0 for some constant b0.

For a random matrix M , we define var pMq fi

E }vecpMq}2 ´ }EvecpMq}2 where vecpMq denotes the
vectorization of matrix M . We denote rm : ns fi tm,m`
1, . . . , nu if m ď n, andH otherwise. We use rns fi r1 : ns
as an abbreviation. For clarity, we use the superscript b
to distinguish the variables with different choices of the
mini-batch size b. In each iteration t, we use Bbt to denote
the batch of samples (or sample indices) to calculate the
stochastic gradient. We denote by Fbt the filtration of infor-
mation before calculating the stochastic gradient in the t-th
iteration, i.e. Fbt fi

 

w0,Bb0, . . . ,Bbt´1

(

.

3.1. Linear Regression

In this subsection, we discuss the dynamics of SGD
applied in linear regression. Given data points
px1, y1q, ¨ ¨ ¨ , pxn, ynq, where xi P Rp and yi P R, we
define the loss function to be

Lpwq “
1

n

n
ÿ

i“1

Lipwq “
1

n

n
ÿ

i“1

1

2

`

wTxi ´ yi
˘2
, (1)

where w P Rp are the model parameters. We consider mini-
mizing (1) by mini-batch SGD. Note that the bias term in
the general linear regression models is omitted, however,
adding the bias term does not change the result of this sec-
tion. Formally, we first choose a mini-batch size b and initial
weights w0. In each iteration t, we sample Bbt , a subset of
rns with cardinality b, and update the parameters by

wbt`1 “ wbt ´ αtg
b
t ,

where gbt “
1
b

ř

iPBbt
∇Li

`

wbt
˘

.

We first show the relationship between the variance of
stochastic gradient gbt and the full gradient ∇L

`

wbt
˘

and

sample-wise gradient ∇Li
`

wbt
˘

, i P rns, derived by con-
sidering all possible choices of the mini-batch Bbt . Readers
should note that Lemma 1 actually holds for all models with
L2-loss, not merely linear regression (since in the proof we
do not need to know the explicit form of Lipwq).

Lemma 1. Let cb fi n´b
bpn´1q ě 0. For any matrixA P Rpˆp

we have

var
´

Agbt

ˇ

ˇ

ˇ
Fb
t

¯

“ E
„

›

›

›
Agbt

›

›

›

2
ˇ

ˇ

ˇ

ˇ

Fb
t



´

›

›

›
A∇L

´

wbt

¯›

›

›

2

“ cb

˜

1

n

n
ÿ

i“1

›

›

›
A∇Li

´

wbt

¯›

›

›

2

´

›

›

›
A∇L

´

wbt

¯›

›

›

2

¸

.

Lemma 1 provides a bridge to connect the norm and vari-
ance of gbt with sample-wise gradients ∇Li

`

wbt
˘

, i P rns.
Therefore, if we can further discover the properties of
∇Li

`

wbt
˘

, i P rns, we are able to calculate the variance
of gbt . Lemma 2 addresses this problem by showing the
relationship between any linear combination of ∇Li

`

wbt
˘

and ∇Li
`

wbt´1

˘

.

Lemma 2. For any set of square matrices tA1, ¨ ¨ ¨ , Anu P
Rpˆp, if we denote A “

řn
i“1Aixix

T
i , then we have

E
«›

›

›

›

›

n
ÿ

i“1

Ai∇Li
´

w
b
t`1

¯

›

›

›

›

›

2ˇ
ˇ

ˇ

ˇ

ˇ

F0

ff

“ E
«
›

›

›

›

›

n
ÿ

i“1

Bi∇Li
´

w
b
t

¯

›

›

›

›

›

2ˇ
ˇ

ˇ

ˇ

ˇ

F0

ff

`
α2
t cb

n2

n
ÿ

k“1

n
ÿ

l“1

E
«›

›

›

›

›

n
ÿ

i“1

B
kl
i ∇Li

´

w
b
t

¯

›

›

›

›

›

2ˇ
ˇ

ˇ

ˇ

ˇ

F0

ff

.

Here Bi “ Ai ´
αt
n A; Bkli “ A if i “ k, i ‰ l, Bkli “ A

if i “ l, i ‰ k, and Bkli equals the zero matrix, otherwise.

Lemma 2 provides the tool to reduce the iteration t by one.
Therefore, we can easily use it to recursively calculate the
norm of any linear combinations of the sample-wise gra-
dients, for all iterations t. Combining the fact that cb is a
decreasing function of b, we are able to show Theorem 1.

Theorem 1. For any t P N and any matrices Ai P

Rpˆp, i P rns, E
”

›

›

řn
i“1Ai∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is a decreas-

ing function of b for b P rns.

Theorem 1 states that the norm of any linear combinations
of the sample-wise gradients is a decreasing function of b.
Combining Lemma 1 which connects the variance of gbt
with the linear combination of∇Li

`

wbt
˘

’s, and the fact that
∇L

`

wbt
˘

“ 1
n

řn
i“1∇Li

`

wbt
˘

, we have Theorem 2.

Theorem 2. Fixing initial weights w0, both var
`

Bgbt
ˇ

ˇF0

˘

and var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

are decreasing functions of mini-
batch size b for all b P rns, t P N, and all square matrices
B P Rpˆp.

As a special case, Corollary 1 guarantees that the variance
of the stochastic gradient estimator is a decreasing function
of b.
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Corollary 1. Fixing initial weights w0, both var
`

gbt
ˇ

ˇF0

˘

and var
`

∇L
`

wbt
˘
ˇ

ˇF0

˘

are decreasing functions of mini-
batch size b for all b P rns and t P N.

In conclusion, we provide a framework for calculating the
explicit value of variance of the stochastic gradient estima-
tors and the norm of any linear combination of sample-wise
gradients. We further show that the variance of both the full
gradient and the stochastic gradient estimator are a decreas-
ing function of the mini-batch size b.

3.2. Two-layer Linear Network with Online Setting

In this section, we study the dynamics of SGD on deep
linear networks. We consider the two-layer linear network
while the results and proofs can be easily extended to deep
linear network with any depth. We consider the population
loss

Lpwq “ Ex„N p0,Ipq

„

1

2
}W2W1x´W

˚
2 W

˚
1 x}

2



under the teacher-student learning framework (Hinton et al.,
2015) with w “ pW1,W2q a tuple of two matrices. Here
W1 P Rp1ˆp and W2 P Rp2ˆp1 are parameter matrices of
the student network and W˚

1 and W˚
2 are the fixed ground-

truth parameters of the teacher network. We use online
SGD to minimize the population loss Lpwq. Formally, we
first choose a mini-batch size b and initial weight matri-
ces tW0,1,W0,2u. In each iteration t, we draw b inde-
pendent and identically distributed samples xt,i, i P rbs
from N p0, Ipq to form the mini-batch Bbt and update the
weight matrices by W b

t`1,1 “W b
t,1 ´ αtg

b
t,1 and W b

t`1,2 “

W b
t,2 ´ αtg

b
t,2, where

gbt,1 “
1

b

b
ÿ

i“1

∇W b
t,1

ˆ

1

2

›

›W b
t,2W

b
t,1xt,i ´W

˚
2 W

˚
1 xt,i

›

›

2
˙

“
1

b

b
ÿ

i“1

W b
t,2

T `

W b
t,2W

b
t,1 ´W

˚
2 W

˚
1

˘

xt,ix
T
t,i, (2)

gbt,2 “
1

b

b
ÿ

i“1

∇W b
t,2

ˆ

1

2

›

›W b
t,2W

b
t,1xt,i ´W

˚
2 W

˚
1 xt,i

›

›

2
˙

“
1

b

b
ÿ

i“1

`

W b
t,2W

b
t,1 ´W

˚
2 W

˚
1

˘

xt,ix
T
t,iW

b
t,1

T
. (3)

The derivation follows from the formulas in (Petersen & Ped-
ersen, 2012). In the following, we useWb

t “ W b
t,2W

b
t,1 ´

W˚
2 W

˚
1 to denote the gap between the product of model

weights and ground-truth weights.

For ease of developing our proofs, we first introduce the
definition of a multiplicative term in Definition 1. Intuitively,
a multiplicative term is a matrix which equals to the product
of its parameter matrices and constant matrices (and their

transpose). The degree of a matrix A in a multiplicative
term M is the number of appearance of A and AT in M .
The degree of M is exactly the number of appearances of
all weight matrices in M .

Definition 1. For any set of matrices S, we denote sS “
S Y tMT : M P Su. Given a set of parameter ma-
trices X “ tX1, X2, ¨ ¨ ¨ , Xnvu and constant matrices
C “ tC1, C2, ¨ ¨ ¨ , Cncu, we say that a matrix M is a multi-
plicative term of parameter matrices X and constant matri-
ces C if it can be written in the form of

M “MpX , Cq “
k
ź

i“1

Ai,

where Ai P sX Y sC. We write degpXj ;Mq “
řk
i“1

`

1 tXj “ Aiu ` 1
 

Xj “ ATi
(˘

, j P rnvs as the
degree of parameter matrix Xj in M , degpCj ;Mq “
řk
i“1

`

1 tCj “ Aiu ` 1
 

Cj “ ATi
(˘

, j P rncs as the
degree of constant matrix Cj in M , and degpMq “
řk
i“1 1

 

Ai P sX
(

“
řnv
j“1 degpXj ;Mq as the total degree

of the parameter matrices of M .

As pointed out in the Section 1, the difficulty of studying the
dynamics of SGD is how to connect the quantities in itera-
tion t with fixed variables, like initial weights W0,1,W0,2

and mini-batch size b. We overcome this challenge by the
following two lemmas. Lemma 3 provides the relation-
ship between gbt,i, i “ 1, 2 and W b

t,i, i “ 1, 2 by taking
expectation over the distribution of random samples in Bbt .
Lemma 4 shows the relationship between W b

t,i, i “ 1, 2 and
gbt´1,i, i “ 1, 2 using (2) and (3).

Lemma 3. For multiplicative terms Mi, i P r0 :ms
of parameter matrices

 

gbt,1, g
b
t,2

(

and constant ma-
trices

 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree di, respec-
tively, we denote M “

śm
i“1 tr pMiqM0 and d “

řm
i“0 di. There exists a set of multiplicative terms

 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter
matrices

 

W b
t,1,W

b
t,2

(

and constant matrices tW˚
1 ,W

˚
2 u

such that

E
“

M
ˇ

ˇFbt
‰

“ N0 `N1
1

b
` ¨ ¨ ¨ `Nd

1

bd
,

where Nk “
řmk
i“1

śmki
j“1 tr

`

Mk
ij

˘

Mk
i0, k P

r0 : ds. Here mk,mki are constants inde-
pendent of b, and

řmki
j“0 deg

`

Mk
ij

˘

ď 3d `
řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

.

Lemma 4. For multiplicative term Mi, i P r0 :ms of
parameter matrices

 

W b
t,1,W

b
t,2

(

and constant matrices
tW˚

1 ,W
˚
2 u of degree di, let d “ 2d0`¨¨¨`dm . There exists

a set of multiplicative terms tMik, i P r0 :ms , k P rdsu
of parameter matrices

 

gbt,1, g
b
t,2

(

and constant matrices



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent

 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

such that

m
ź

i“1

tr pMiqM0 “

d
ÿ

k“1

m
ź

i“1

tr pMikqM0k,

where
řm
i“0 deg pMikq ď d.

With the help of Lemmas 3 and 4, we can represent gbt,i, i “
1, 2 using multiplicative terms of gbt´1,i, i “ 1, 2 and some
other constant matrices. Furthermore, by iteratively reduc-
ing the value of t, we are able to represent gbt,i, i “ 1, 2
by the variables in t “ 0. Theorem 3 precisely gives the
representation in the form of a polynomial of 1

b and the
coefficients as the sum of multiplicative terms of parameter
matrices

 

W b
0,1,W

b
0,2

(

and constant matrices tW˚
1 ,W

˚
2 u.

Theorem 3. Given t ě 0, for any multiplicative terms
Mi, i P r0 :ms of parameter matrices

 

gbt,1, g
b
t,2

(

and con-
stant matrices

 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree di, re-
spectively, we denoteM “

śm
i“1 tr pMiqM0, d “

řm
i“0 di

and d1 “
řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

.
There exists a set of multiplicative terms
 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of param-
eter matrices

 

W b
0,1,W

b
0,2

(

and constant matrices
tW˚

1 ,W
˚
2 u such that

E rM |F0s “ N0 `N1
1

b
` ¨ ¨ ¨ `Nq

1

bq
,

where Nk “
řmk
i“1

śmki
j“1 tr

`

Mk
ij

˘

Mk
i0, k P r0 : qs. Here

mk,mki and q ď 1
2 p3

t`1´1qd` 1
2 p3

t´1qd1 are constants
independent of b, and

řmki
j“0 deg

`

Mk
ij

˘

ď 3tp3d` d1q.

By changing the role of parameter and constant matrices we
obtain the following corollary.

Corollary 2. Given t ě 0, for any multiplica-
tive terms Mi, i P r0 :ms of parameter matrices
 

W b
t,1,W

b
t,2,Wb

t

(

and constant matrices tW˚
1 ,W

˚
2 u such

that
ř2
i“1 deg

`

W b
t,i;M

˘

“ d and deg
`

Wb
t ;M

˘

“ d1, we
denote M “

śm
i“1 tr pMiqM0. There exists a set of mul-

tiplicative terms
 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter matrices
 

W b
0,1,W

b
0,2

(

and constant matrices
tW˚

1 ,W
˚
2 u such that

E rM |F0s “ N0 `N1
1

b
` ¨ ¨ ¨ `Nq

1

bq
,

where Nk “
řmk
i“1

śmki
j“1 tr

`

Mk
ij

˘

Mk
i0, k P r0 : qs. Here

mk,mki and q ď 3t pd` 2d1q are constants independent of
b, and

řmki
j“0 deg

`

Mk
ij

˘

ď 3t pd` 2d1q.

As a special case of Theorem 3, Theorem 4 shows that
the variance of the stochastic gradient estimators is also
a polynomial of 1

b but with no constant term. This backs
the important intuition that the variance is approximately

inversely proportional to the mini-batch size b. Besides,
note that if we consider bÑ8, intuitively we should have
var

`

gbt,i
ˇ

ˇF0

˘

Ñ 0, i “ 1, 2. This observation aligns with
the statement of Theorem 4.

Theorem 4. Given t ě 0, value var
`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2 can
be written as a polynomial of 1

b with degree at most 2 ¨ 3t

with no constant term. Formally, we have

var
`

gbt,i
ˇ

ˇF0

˘

“ β1
1

b
` ¨ ¨ ¨ ` βr

1

br
, (4)

where r ď 2 ¨ 3t`1 and each βi is a constant independent
of b.

Finally, to show the that the variance is a decreasing function
of b for large enough b, we only need to show that the leading
coefficient β1 is non-negative. This is guaranteed by the
fact that variance is always non-negative. We therefore have
Theorem 5.

Theorem 5. Given t P N, there exists a constant b0 such
that for all b ě b0 function var

`

gbt,i
ˇ

ˇF0

˘

, i “ 1, 2 is a
decreasing function of b.

In conclusion, we present the relationship between any mul-
tiplicative terms of parameter matrices

 

gbt,i,W
b
t,i, i “ 1, 2

(

and constant matrices tW˚
1 ,W

˚
2 u and the initial weights

W0,1,W0,2 and the mini-batch size b. Unlike the linear re-
gression setting, the closed form expressions for the variance
are unknown. However, Theorem 4 conquers this issue by
iteratively deducing t one by one and it provides a polyno-
mial representation. We are also able to show the decreasing
property of the variance of stochastic gradient estimators
with respect to b, based on this polynomial representation.

4. Experiments
In this section, we present numerical results to support the
theorems in Section 3 and provide further insights into the
impact of the mini-batch size on the dynamics of SGD. The
experiments are conducted on four datasets and models that
are relatively small due to the computational cost of using
large models and datasets. The goal of these experiments is
to support the theorems in Section 3, to backup the hypothe-
ses discussed in the introduction, and to provide further
insights.

For all experiments, we perform mini-batch SGD multiple
times starting from the same initial weights and follow-
ing the same choice of the learning rates and other hyper-
parameters, if applicable. This enables us to calculate the
variance of the gradient estimators and other statistics in
each iteration, where the randomness comes only from dif-
ferent samples of SGD. The learning rate αt is selected to
be inversely proportional to iteration t, or fixed, depending
on the task at hand.
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(a) Variance of stochastic gradients and full gradients (b) Fitting polynomials of mini-batch size b

Figure 1. Experimental results for the Graduate Admission dataset. Left: log
`

var
`

gbt
ˇ

ˇF0

˘˘

and log
`

var
`

∇Lpwbt q
ˇ

ˇF0

˘˘

vs iteration t
for 4 different mini-batch sizes. Right: The log of polynomial values when fitting polynomials on selected mini-batch sizes at certain
iterations.

(a) Variance of gradients with respect to W1 (b) Variance of gradients with respect to W2

Figure 2. Experimental results for the MNIST dataset. Left: log
`

var
`

gbt,1
ˇ

ˇF0

˘˘

and log
`

var
`

∇W1LpW b
t,1,W

b
t,2q

ˇ

ˇF0

˘˘

vs iteration t.
Right: log

`

var
`

gbt,2
ˇ

ˇF0

˘˘

and log
`

var
`

∇W2LpW b
t,1,W

b
t,2q

ˇ

ˇF0

˘˘

vs iteration t.

All models are implemented using PyTorch version 1.4
(Paszke et al., 2019) and trained on NVIDIA 2080Ti/1080
GPUs. We report the details about the hyperparameters and
training procedures in Appendix B.

4.1. Datasets and Settings

The Graduate Admission dataset1 (Acharya et al., 2019) is
to predict the chance of a graduate admission using linear
regression. The dataset contains 500 samples with 6 features.
This is a popular regression dataset with clean data. We
build a linear regression model to predict the chance of
acceptance (we include the intercept term in the model) and
minimize the empirical L2 loss using mini-batch SGD, as

1https://www.kaggle.com/mohansacharya/
graduate-admissions

stated in Section 3.1. The purpose of this experiment is to
empirically study the rate of decrease of the variance. The
theoretical study exhibited in Section 3.1 establishes the
non-increasing property but it does not state anything about
the rate of decrease.

We build a synthetic dataset of standard normal samples to
study the setting in Section 3.2. We fix the teacher network
with 64 input neurons, 256 hidden neurons and 128 output
neurons. We optimize the population L2 loss by updating
the two parameter matrices of the student network using
online SGD, as stated in Section 3.2. In this case we have
proved the functional form of the variance as a function
of b and show the decreasing property of the variance of
the stochastic gradient estimators for large mini-batch sizes.
However, we do not show the decreasing property for every
b. With this experiment we confirm that the conjecture likely

https://www.kaggle.com/mohansacharya/graduate-admissions
https://www.kaggle.com/mohansacharya/graduate-admissions
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holds.

The MNIST dataset is to recognize digits in handwritten
images of digits. We use all 60,000 training samples and
10,000 validation samples of MNIST. We build a three-
layer fully connected neural network with 1024, 512 and 10
neurons in each layer. For the two hidden layers, we use the
ReLU activation function. The last layer is the softmax layer
which gives the prediction probabilities for the 10 digits. We
use mini-batch SGD to optimize the cross-entropy loss of
the model. The model deviates from our analytical setting
since it has non-linear activations, it has the cross-entropy
loss function (instead of L2), and empirical loss (as opposed
to population). MNIST is selected due to its fast training
and popularity in deep learning experiments. The goal is to
verify the results in this different setting and to back up our
hypotheses.

The Yelp Review dataset from the Yelp Dataset Challenge
2015 (Zhang et al., 2015) contains 1,569,264 samples of
customer reviews with positive/negative sentiment labels.
We use 10,000 samples as our training set and 1,000 samples
as the validation set. We use XLNet (Yang et al., 2019) to
perform sentiment classification on this dataset. Our XLNet
has 6 layers, the hidden size of 384, and 12 attention heads.
There are in total 35,493,122 parameters. We intentionally
reduce the number of layers and hidden size of XLNet and
select a relatively small size of the training and validation
sets since training of XLNet is very time-consuming ((Yang
et al., 2019) train on 512 TPU v3 chips for 5.5 days) and
we need to train the model for multiple runs. This setting
allows us to train our model in several hours on a single
GPU card. We train the model using the Adam weight decay
optimizer, and some other techniques, as suggested in Table
8 of (Yang et al., 2019). This dataset represents sequential
data where we further consider the hypotheses.

4.2. Discussion

As observed in Figure 1(a), under the linear regression set-
ting with the Graduate Admission dataset, the variance of
the stochastic gradient estimators and full gradients are all
strictly decreasing functions of b for all iterations. This re-
sult verifies the theorems in Section 3.1. Figure 1(b) further
studies the rate of decrease of the variance. From the proofs
in Section 3.1 we see that var

`

gbt
ˇ

ˇF0

˘

is a polynomial of 1
b

with degree t ` 1. Therefore, for every t, we can approx-
imate this polynomial by sampling many different b’s and
calculate the corresponding variances. We pick b to cover
all numbers that are either a power of 2 or multiple of 40
in r2, 500s (there are a total of 21 such values) and fit a
polynomial with degree 6 (an estimate from the analyses) at
t “ 10, 20, 30, 40. Figure 1(b) shows the fitted polynomials.
As we observe, the value var

`

gbt
ˇ

ˇF0

˘

(approximated by the
value of the polynomial) is both decreasing with respect

to the mini-batch size b and iteration t. Further, the rate
of decrease in b is slower as the b increasing. This pro-
vides a further insight into the dynamics of training a linear
regression problem with SGD.

Under the two-layer linear network setting with the synthetic
dataset, Figure 2 verifies that the variance of the stochastic
gradient estimators and full gradients are all strictly de-
creasing functions of b for all iterations. This figure also
empirically shows that the constant b0 in Theorem 5 could
be as small as b0 “ 4. In fact, we also experiment with
the mini-batch size of 1 and 2, and the decreasing property
remains to hold. We also test this on multiple choices of
initial weights and learning rates and this pattern remains
clear.

In aforementioned two experiments we use SGD in its orig-
inal form by randomly sampling mini-batches. In deep
learning with large-scale training data such a strategy is
computationally prohibitive and thus samples are scanned
in a cyclic order which implies fixed mini-batches are pro-
cessed many times. Therefore, in the next two datasets
we perform standard “epoch” based training to empirically
study the remaining two hypotheses discussed in the intro-
duction (decreasing loss and error as a function of b) and
sensitivity with respect to the initial weights. Note that we
are using cross-entropy loss in the MNIST dataset and the
Adam optimizer in the Yelp dataset and thus these experi-
ments do not meet all of the assumptions of the analysis in
Section 3.

As shown in Figure 3(a), we run SGD with two batch sizes
64 and 128 on five different initial weights. This plot shows
that, even the smallest value of the variance among the five
different initial weights with a mini-batch size of 64, is
still larger than the largest variance of mini-batch size 128.
We observe that the sensitivity to the initial weights is not
large. This plot also empirically verifies our conjecture in
the introduction that the variance of the stochastic gradient
estimators is a decreasing function of the mini-batch size,
for all iterations of SGD in a general deep learning model.

In addition, we also conjecture that there exists the decreas-
ing property for the expected loss, error and the generaliza-
tion ability with respect to the mini-batch size. Figure 4(a)
shows that the expected loss (again, randomness comes from
different runs of SGD through the different mini-batches
with the same initial weights and learning rates) on the
training set is a decreasing function of b. However, this de-
creasing property does not hold on the validation set when
the loss tends to be stable or increasing, in other words, the
model starts to be over-fitting. We hypothesize that this is
because the learned weights start to bounce around a local
minimum when the model is over-fitting. As the larger mini-
batch size brings smaller variance, the weights are closer
to the local minimum found by SGD, and therefore yield a
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(a) Different initial weights (b) Gap of accuracy (zoomed-in)

Figure 3. Experimental results for the MNIST dataset. Left: The median, min, and max of the log of variance of the stochastic gradient
estimators for two different mini-batch sizes (distinguished by colors) and five different initial weights. The solid lines show the median
of all five initial weights while the highlighted regions show the min and max of the log of variance. Right: The gap of accuracy on
training and test sets vs epochs starting from epoch 100

smaller loss function value. Figure 4(b) shows that both the
expected error on training and validation sets are decreasing
functions of b.

Figure 3(b) exhibits a relationship between the model’s
generalization ability and the mini-batch size. As suggested
by (Simard et al., 2013), we build a test set by distorting
the 10,000 images of the validation set. The prediction
accuracy is obtained on both training and test sets and we
calculate the gap between these two accuracies every 100
epochs. We use this gap to measure the model generalization
ability (the smaller the better). Figure 3(b) shows that the
gap is an increasing function of b starting at epoch 500,
which partially aligns with our conjecture regarding the
relationship between the generalization ability and the mini-
batch size. We also test this on multiple choices of the
hyper-parameters which control the degree of distortion in
the test set and this pattern remains clear.

Figure 5 shows the similar phenomenon that the variance
of stochastic estimators and the expected loss and error on
both training and validation sets are decreasing functions
of b even if we train XLNet using Adam. This example
gives us confidence that the decreasing properties are not
merely restricted on shallow neural networks or vanilla SGD
algorithms. They actually appear in many advanced models
and optimization methods.

5. Summary and Future Work
We examine the impact of the mini-batch size on the dy-
namics of SGD. Our focus is on the variance of stochastic
gradient estimators. For linear regression and a two-layer
linear network, we are able to theoretically prove that the

variance conjecture holds. We further experiment on mul-
tiple models and datasets to verify our claims and their
applicability to practical settings. Besides, we also empir-
ically address the conjectures about the expected loss and
the generalization ability.

There are several possible directions for future work. One
obvious extension of this work is to show the decreasing
property of variance to more general machine learning mod-
els, like fully connected networks with activation functions
and residual connections. Another challenging research
direction is to theoretically investigate the impact of the
mini-batch size on the expected loss and the generalization
ability of machine learning models (the conjectures we men-
tioned in Section 1). The extensions of this work to other
optimization algorithms, like Adam and Gradient Boost-
ing Machines, are also very attractive. We hope our proof
techniques can serve as a tool for future research.
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A. Proofs
A.1. Proofs of Results in Section 3.1

For two matrices A,B with the same dimension, we define the inner product xA,By fi tr
`

ATB
˘

.
Lemma 5. Suppose that fpxq and gpxq are both smooth, non-negative and decreasing functions of x P R. Then hpxq “
fpxqgpxq is also a non-negative and decreasing function of x.

Proof. It is obvious that hpxq is non-negative for all x. The first-order derivative of h is

h1pxq “ f 1pxqgpxq ` fpxqg1pxq ď 0,

and thus hpxq is also a decreasing function of x.

Proof of Lemma 1. Note that
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Proof of Lemma 2. Let Ci “ xix
T
i and C “ 1

n

řn
i“1 Ci. For the given A1, . . . , An, we denote A “
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i“1AiCi. Then we
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Proof of Theorem 1. We use induction to show this statement.

When t “ 0, E
”

›

›

řn
i“1Ai∇Li

`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

“ }
řn
i“1Ai∇Li pw0q}

2 which is invariant of b. Therefore, it is a decreasing
function of b.



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent

Suppose the statement holds for t. For any set of matrices tA1, . . . , Anu in Rpˆp, by Lemma 2 we know that there exist
matrices tB1, ¨ ¨ ¨ , Bnu and
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In order to prove Theorem 2, we split the task to two separate theorems about the full gradient and the stochastic gradient
and prove them one by one.
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we have
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”

›

›B pI ´ αtCq∇L
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
Fb0

ı

` α2
t cbE

«˜

1

n

n
ÿ

i“1

›

›BC∇Li
`

wbt´1

˘
›

›

2
´
›

›BC∇L
`

wbt´1

˘
›

›

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

´
›

›E
“

B pI ´ αtCq∇L
`

wbt´1

˘
ˇ

ˇFb0
‰
›

›

2

“ var
`

B pI ´ αtCq∇L
`

wbt´1

˘ ˇ

ˇF0

˘

` α2
t cb

˜

1

n

n
ÿ

i“1

E
”

›

›BC∇Li
`

wbt´1

˘›

›

2
ˇ

ˇ

ˇ
F0

ı

´ E
”

›

›BC∇L
`

wbt´1

˘›

›

2
ˇ

ˇ

ˇ
F0

ı

¸

“ var
`

B pI ´ αtCq∇L
`

wbt´1

˘
ˇ

ˇF0

˘

`
α2
t cb
n2

ÿ

i‰j

E
”

›

›BC∇Li
`

wbt´1

˘

´BC∇Lj
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

, (6)

where (5) is by Lemma 1. By induction, we know that the first term of (6) is a decreasing function of b. Taking
Ai “ BC,Aj “ ´BC,Ak “ 0, k P rnszti, ju in Theorem 1, we know that

E
”

›

›BC∇Li
`

wbt´1

˘

´BC∇Lj
`

wbt´1

˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is also a decreasing function of b. Note that α
2
t cb
n2 decreases as b increases. By Lemma 5 we learn that (6) is a decreasing

function of b and hence we have completed the induction.

Proof of Theorem 7. We have

var
`

Bgbt
ˇ

ˇF0

˘

“ E
”

›

›Bgbt
›

›

2
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

Bgbt
ˇ

ˇF0

‰
›

›

2

“ E
”

E
”

›

›Bgbt
›

›

2
ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

E
“

Bgbt
ˇ

ˇFbt
‰
ˇ

ˇF0

‰
›

›

2

“ cb

˜

1

n

n
ÿ

i“1

E
”

›

›B∇Li
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

´ E
”

›

›B∇L
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

¸

` E
”

›

›B∇L
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

´
›

›E
“

B∇L
`

wbt
˘
ˇ

ˇF0

‰
›

›

2

“
cb
n2

ÿ

i‰j

E
”

›

›B∇Li
`

wbt
˘

´B∇Lj
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

` var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

.

Taking Ai “ B,Aj “ ´B,Ak “ 0, k P rnszti, ju in Theorem 1, we know that

E
”

›

›B∇Li
`

wbt
˘

´B∇Lj
`

wbt
˘
›

›

2
ˇ

ˇ

ˇ
F0

ı

is a decreasing and non-negative function of b for all i, j P rns. By Theorem 6, we know that var
`

B∇L
`

wbt
˘
ˇ

ˇF0

˘

is also
a decreasing function of b. Therefore, var

`

Bgbt
ˇ

ˇF0

˘

, as the sum of two decreasing functions of b, is also a decreasing
function of b.
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Proof of Corollary 1. Simply taking B “ Ip in Theorem 1 yields the proof.

A.2. Proofs for Results in 3.2

We often rely on the trivial facts that x1x
T
2 “ x1Ipx

T
2 and x1x

T
2 x3x

T
4 “ x1x

T
2 Ipx3x

T
4 .

Lemma 6. Given a multiplicative term of parameter matrices
 

uiv
T
i : ui, vi P Rp, i P rn1s

(

YtAj : Aj P Rpˆp, j P rn2su

and constant matrix tIpu such that degpu1v
T
1 ;Mq ě 1, we have

tr pMq “ vT1 M
1u1,

where M 1 is a multiplicative term of parameter matrices
 

uiv
T
i : ui, vi P Rp, i P rn1s

(

Y tAj : Aj P Rpˆp, j P rn2su

and constant matrix tIpu such that degpMq “ degpM 1q ` 1,degpAj ;Mq “ degpAj ;M
1q, j P rn2s,degpuiv

T
i ;Mq “

degpuiv
T
i ;M

1q, i P r2 : n1s and degpu1v
T
1 ;Mq “ degpu1v

T
1 ;M

1q ` 1.

Proof. By the definition of multiplicative terms, we know that there exist two multiplicative terms M1,M2 of parameter
matrices

 

uiv
T
i : ui, vi P Rp, i P rn1s

(

Y tAj : Aj P Rpˆp, j P rn2su and constant matrix tIpu such that

M “M1u1v
T
1 M2,

where degpMq “ degpM1q ` degpM2q ` 1,degpAj ;Mq “ degpAj ;M1q ` degpAj ;M2q, j P rn2s,degpuiv
T
i ;Mq “

degpuiv
T
i ;M1q` degpuiv

T
i ;M2q, i P r2 : n1s and degpu1v

T
1 ;Mq “ degpu1v

T
1 ;M1q` degpu1v

T
1 ;M2q` 1. Therefore we

have
tr pMq “ tr

`

M1u1v
T
1 M2

˘

“ tr
`

vT1 M2M1u1

˘

“ vT1 M2M1u1.

Note that M 1 “M2M1 satisfies that degpM 1q “ degpM1q ` degpM2q,degpAj ,M
1q “ degpAj ;M1q ` degpAj ;M2q, j P

rn2s,degpuiv
T
i ;Mq “ degpuiv

T
i ;M1q ` degpuiv

T
i ;M2q, i P r2 : n1s and degpu1v

T
1 ;M

1q “ degpu1v
T
1 ;M1q `

degpu1v
T
1 ;M2q ` 1. We have finished the proof.

The following two lemmas focus on the expectation of the product of quadratic forms of the standard normal samples.
Lemma 7 focuses on single sample while 8 focuses on the same form with b i.i.d. samples drawn from the standard normal
distribution.

Lemma 7. Given matrices Aj P Rpˆp, j P rm´ 1s, we have

Ex„N p0,Ipq
“

xxTA1xx
TA2 ¨ ¨ ¨Am´1xx

T
‰

“

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0,

where Nm and ni, i P rNms are constants depending on m and tMik, k P r0 : nis , i P rNmsu are multiplicative terms
of parameter matrices tAj , j P rm´ 1su and constant matrix tIpu. Furthermore, for every i P rNms, we have
řni
k“0 degpAj ;Mikq “ 1, j P rm´ 1s and therefore

řni
k“0 deg pMikq “ m´ 1.

Proof. See (Magnus, 1978).

Lemma 8. We are given matrices Aj P Rpˆp, j P rm´ 1s and random vectors xi, i P rbs independently and identically
drawn from N p0, Ipq. We assume that the multi-set S “

 

ij , i
1
j : j P rms

(

satisfies that for every i P S, i is an element of
rbs and the number of appearance of i in S is even. Then

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m

ı

“

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0, (7)

where Nm and ni are constants depending on m (and independent of b) and Mik, k P r0 : nis , i P rNms are multiplicative
terms of parameter matrices tAj , j P rm´ 1su and constant matrix tIpu. Furthermore, for every i P rNms, we have
řni
k“0 degpAj ;Mikq “ 1, j P rm´ 1s and therefore

řni
k“0 deg pMikq “ m´ 1.
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Proof. Let βi, i P rbs be the number of appearances of i in S, which are even by assumption. We induct on the quantity
N “

řb
i“1 1 tβi ‰ 0u.

For the base case of N “ 1, all elements in the multi-set S have the same value. Without loss of generality, we assume
ij “ i1j “ 1, j P rms. Then

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
¨ ¨ ¨Am´1ximx

T
i1m

ı

“ Ex1„N p0,Ipq
“

x1x
T
1 A1x1x

T
1 ¨ ¨ ¨Am´1x1x

T
1

‰

,

which is the statement of Lemma 7.

Suppose the statement holds for N ě 1, and we consider the case of N ` 1. Note that xTi1jAjxij`1 “ xTij`1
Ajxi1j is a scalar

so that we can move it around without changing the value of the expression2. We distinguish two cases.

• Let i1 ‰ i1m. Without loss of generality, we assume i1 “ 1. We can always change the order of xTi1jAjxij`1
, j P rm´1s

(and flip it to be xTij`1
Ajxi1j if necessary) such that all x1’s appear in the form of x1x

T
1 :

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m
“ x1

´

xTi11A1xi2x
T
i12
A2 ¨ ¨ ¨Am´1xim

¯

xTi1m

“ x1x
T
1
rA1x1x

T
1
rA2 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1
rA β1

2
rxxTi1m

where rx P txi, i P rbsu , rx ‰ x1 and rAi’s are multiplicative terms of parameter matrices txuxTv : u, v P

r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that
ř

u,vPr2:bs

ř

β1
2

k“1 degpxux
T
v ;

rAkq “ m ´
β1

2 ´ 1

and
ř

β1
2

k“1 degpAj ;
rAkq “ 1, j P rm´ 1s3.

Applying Lemma 7 and the law of iterative expectations, we have

Exi„N p0,Ipq

”

xi1x
T
i11
A1xi2x

T
i12
¨ ¨ ¨Am´1ximx

T
i1m

ı

“ Ex1,¨¨¨ ,xb

”

x1x
T
1
rA1x1x

T
1
rA2 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1
rA β1

2
rxxTi1m

ı

“ Ex2,¨¨¨ ,xb

«˜

Nm
ÿ

i“1

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m

ff

“

Nm
ÿ

i“1

Ex2,¨¨¨ ,xb

«˜

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m

ff

,

where Nm and ni are constant depending on m (and independent of b) and Mik, k P r0 : nis , i P rNms are multiplica-
tive terms of parameter matrices

!

rAj , j P r
β1

2 ´ 1s
)

and constant matrix tIpu. Furthermore, for every i P rNms, we

have
řni
k“0 degp

rAj ;Mikq “ 1, j P rβ1

2 ´ 1s and therefore
řni
k“0 deg pMikq “

β1

2 ´ 1.

Combining the definition of rAj’s, we know that Mik, k P r0 : nis , i P rNms are multiplicative terms of parameter
matrices txuxTv : u, v P r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that for every i P rNms, we have
ř

u,vPr2:bs

řni
k“0 degpxux

T
v ;Mikq “ m´ β1

2 ´ 1 and
řni
k“0 degpAj ;Mikq “ 1, j P rm´ 1s.

2For example, we can rewrite

xi1x
T
i11
A1xi2x

T
i12
A2xi3x

T
i13
“ xi1

´

xTi11A1xi2

¯ ”

xTi12A2xi3

ı

xTi13 “ xi1

”

xTi12A2xi3

ı ´

xTi11A1xi2

¯

xTi13

“ xi1

”

xTi12

´

xTi11A1xi2

¯

A2xi3

ı

xTi13 “ xi1

”

xTi12A2

´

xTi11A1xi2

¯

xi3

ı

xTi13 .

3For example, we can rewrite

x1x
T
2 A1x1x

T
1 A2x3x

T
3 A3x1x2 “ x1

´

xT2 A1x1
¯ ”

xT1 A2x3
ı !

xT3 A3x1
)

x2 “ x1
´

xT1 A1x2
¯ ”

xT3 A2x1
ı !

xT1 A3x3
)

x2

“x1x
T
1 A1x2x

T
3 A2x1x

T
1 A3x3x2 “ x1x

T
1
rA1x1x

T
1
rA2rxx2,

where rA1 “ A1x2x
T
3 A2, rA2 “ A3 and rx “ x3. Besides, m “ 4, β1 “ 4, thus the degree of xuxTv in all rAk sum up to m´ β1

2
´ 1 “ 1



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent

Applying Lemma 6, for every k P r0 : nis and every i P rNms, there exists uik, vik P txj : j P r2 : bsu and multi-
plicative term M 1

ik of parameter matrices txuxTv : u, v P r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such
that

tr pMikq “ uTikM
1
ikvik.

Therefore, we have
˜

ni
ź

k“1

tr pMikqMi0

¸

rA β1
2
rxxTi1m “

ni
ź

k“1

`

uTikM
1
ikvik

˘

Mi0
rA β1

2
rxxTi1m “Mi0

rA β1
2
rx
ni
ź

k“1

`

uTikM
1
ikvik

˘

xTi1m fi Ui.

Note that for every i P rNms, we have

m´1
ÿ

j“1

degpxi;Ajq “
ni
ÿ

k“1

degpxi;M
1
ikq ` degpxi;Mi0q ` deg

´

xi; rA β1
2

¯

` degpxi; rxq ` deg
´

xi;x
T
i1m

¯

,

and for every j P rm´ 1s, we have

ni
ÿ

k“1

degpAj ;M
1
ikq ` degpAj ;Mi0q ` deg

´

Aj ; rA β1
2

¯

“ 1.

In other words, for every i P rNms, Ui has the form of pA0xpi1x
T
pi11

pA1xpi2x
T
pi12
¨ ¨ ¨ pAm´1xpim1

xTi1m
pAm1 but there is no

appearance of x1. Here x
pij
, x

pij
P txj , j P r2 : bsu, and pAi, i P r0 :ms are multiplicative terms of parameter matrices

tAj , j P rm´ 1su and constant matrix tIpu. Furthermore, for every j P rm ´ 1s, we have
řni
k“0 degpAj ;

pAiq “ 1.
Note that here we use the liberty of adding identity matrices if more than two consecutive x’s appear. Since we have
reduced N ` 1 by one, we can use induction on x

pi1
xT
pi11

pA1xpi2x
T
pi12
¨ ¨ ¨ pAm´1xpim1

xTi1m and finish the proof. The two

constant matrices pA0 and pAm do not change the result of expectation since E
´

pA0X pAm1
¯

“ pA0EpXq pAm1 .

• If i1 “ i1m, without loss of generality we assume, i11 “ 1 and i11 ‰ i1 (note that all xTi1jAjxij`1
, j P rm´ 1s are inter-

changeable and there is at least one element in S that is not equal to i1). We change the orders of xTi1jAjxij`1
, j P rm´1s

(and flip it to be xTij`1
Ajxi1j if necessary) such that all x1’s appear in a consecutive form of x1x

T
1 :

xi1x
T
i11
A1xi2x

T
i12
A2 ¨ ¨ ¨Am´1ximx

T
i1m
“ xi1

´

xTi11A1xi2x
T
i12
A2 ¨ ¨ ¨Am´1xim

¯

xTi1m

“ xi1

´

rxT1
rA0

”

x1x
T
1
rA1 ¨ ¨ ¨ rA β1

2 ´1
x1x

T
1

ı

rA β1
2
rx2

¯

xTi1m ,

where rx1, rx2 P txi, i P rbsu , rx1, rx2 ‰ x1 and rAi’s are multiplicative terms of parameter matrices txuxTv : u, v P
r2 : bsu Y tAj : j P rm´ 1su and constant matrix tIpu such that

ÿ

u,vPr2:bs

β1
2
ÿ

k“0

degpxux
T
v ;

rAkq “ m´
β1

2
´ 2

and
ř

β1
2

k“0 degpAj ;
rAkq “ 1, j P rm´ 1s. The remaining reasoning is the same as the previous case.

Remark. If one of the βi numbers of appearance of xj , j P rbs is odd, then it is easy to see that the result in (7) is the zero
matrix.
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Proof of Lemma 3. By (2) and (3) we have

M “

m
ź

i“1

tr pMiqM0 “
1

bd

bd
ÿ

k“1

m
ź

i“1

tr pMkiqMk0, (8)

where each Mki, k P rb
ds, i P r0 :ms is a multiplicative term of parameter matrices

 

xt,ix
T
t,i, i P rbs

(

and constant matrices
 

W b
t,1,W

b
t,2,Wb

t

(

. Let ĂMk “
śm
i“1 tr pMkiqMk0, k P

“

bd
‰

. We split set
!

ĂMk : k P
“

bd
‰

)

into disjoint and non-empty
sets (equivalent classes) S1, . . . , SnM such that

1. for every i P rnM s and every M1,M2 P Si, we have E
“

M1

ˇ

ˇFbt
‰

“ E
“

M2

ˇ

ˇFbt
‰

,

2. for every i, j P rnM s, i ‰ j and every M1 P Si and M2 P Sj , we have E
“

M1

ˇ

ˇFbt
‰

‰ E
“

M2

ˇ

ˇFbt
‰

.

Note that YnMi“1Si “
!

ĂMk : k P
“

bd
‰

)

. Let xMk P Sk represent the equivalent class Sk (it can be any member of Sk). For

every i P rnM s, we can always write |Si| “ ei,0 ` ei,1b ` ¨ ¨ ¨ ` ei,db
d such that ei,j P N, ei,j ă b, j P r0 : ds (actually

ei,j’s are the digits of the base-b representation of |Si|). Then we have

E
“

M
ˇ

ˇFbt
‰

“ E

»

–

1

bd

bd
ÿ

k“1

ĂMk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fbt

fi

fl “
1

bd
E

«

nM
ÿ

i“1

`

ei,0 ` ei,1b` ¨ ¨ ¨ ` ei,db
d
˘

xMi

ˇ

ˇ

ˇ

ˇ

ˇ

Fbt

ff

“
1

bd

nM
ÿ

i“1

`

ei,0 ` ei,1b` ¨ ¨ ¨ ` ei,db
d
˘

E
”

xMi

ˇ

ˇ

ˇ
Fbt

ı

(9)

“

nM
ÿ

i“1

ˆ

ei,d ` ei,d´1
1

b
` ¨ ¨ ¨ ` ei,0

1

bd

˙

E
”

xMi

ˇ

ˇ

ˇ
Fbt

ı

.

It is important to note that nM , the number of different equivalent classes, is independent of b. This follows from the fact that
each E

”

ĂMk

ˇ

ˇ

ˇ
Fbt

ı

(and so as E
”

xMk

ˇ

ˇ

ˇ
Fbt

ı

) includes a finite number of weight matrices W b
t,1 and W b

t,2 with degree less than

or equal to 3d`
řm
i“0

`

deg
`

W b
t,1;Mi

˘

` degpW b
t,2;Miq

˘

(see Lemma 8). Thus the number of partition sets is bounded by
a quantity independent of b.

Note that each Mki can be represented as

Mki “ Aki0 x
ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

xkit,idi
T
Akidi

for some matricesAki0 , . . . , A
ki
di

that are multiplicative term of parameter matrices
 

W b
t,1,W

b
t,2andWb

t

(

constant matrix tIpu
(we stress again that someAmatrices can be identities, based on the definition of multiplicative terms), and xkit,i1 , . . . , x

ki
t,idi

P

txt,1, . . . , xt,bu. We have

tr pMkiq “ tr
´

Aki0 x
ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

xkit,idi
T
Akidi

¯

“ xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

.

For every k P
“

bd
‰

, we have

m
ź

i“1

tr pMkiqMk0 “

«

m
ź

i“1

xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

ff

Ak0
0 xk0

t,i1x
k0
t,i1

T
Ak0

1 ¨ ¨ ¨Ak0
d0´1x

k0
t,id0

xk0
t,id0

T
Ak0
d0

“

«

m
ź

i“1

xkit,idi
T
AkidiA

ki
0 x

ki
t,i1x

ki
t,i1

T
Aki1 ¨ ¨ ¨A

ki
di´1x

ki
t,idi

ff

”

xk0
t,i1

T
Ak0

1 ¨ ¨ ¨Ak0
d0´1x

k0
t,id0

ı

Ak0
0 xk0

t,i1x
k0
t,id0

T
Ak0
d0 ,

which can be rewritten as

ĂMk “

m
ź

i“1

tr pMkiqMk0 “

˜

d
ź

j“1

xTt,̄ijA
k
jxt,̄i1j

¸

Ak0
0 xk0

t,i1x
k0
t,id0

T
Ak0
d0 .
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Note that the randomness of each ĂMk given Fbt only comes from the randomness of xt,j’s, i.e. for all k P
“

bd
‰

we have

E
”

ĂMk

ˇ

ˇ

ˇ
Fbt

ı

“ Ext,j„N p0,Iq

«˜

d
ź

j“1

xTt,ijA
k
jxt,i1j

¸

Ak0xt,i10x
T
t,i0A

k
0

1

ff

“ Ext,j„N p0,Iq

«

Ak0xt,i10

˜

d
ź

j“1

xTt,ijA
k
jxt,i1j

¸

xTt,i0A
k
0

1

ff

(10)

“

nkM
ÿ

i“1

nki
ź

j“1

tr
´

ĂMk
ij

¯

ĂMk
i0,

where the last equation comes from Lemma 8. Here nkM , n
k
i , i P

“

nkM
‰

, k P
“

bd
‰

are constants independent of b, Mk
ij’s are

multiplicative terms of parameter matrices
 

W b
t,1,W

b
t,2,Wb

t

(

and constant matrix tIpu such that for every i P
“

nkM
‰

, we
have

nki
ÿ

j“0

deg
´

Wb
t ;
ĂMk
ij

¯

“ d (11)

and
nki
ÿ

j“0

´

deg
´

W b
t,1;

ĂMk
ij

¯

` deg
´

W b
t,2;

ĂMk
ij

¯¯

“ d`
m
ÿ

r“0

`

deg
`

W b
t,1;Mr

˘

` degpW b
t,2;Mrq

˘

. (12)

These degree relationships can be observed from (2), (3), and the fact that each gbt,1 or gbt,1 contributes oneWb
t and one

of W b
t,1 or W b

t,2 in
śnki
j“1 tr

´

ĂMk
ij

¯

ĂMk
i0. Note that Wt “ W b

t,2W
b
t,2 ´W˚

2 W
˚
1 . For every i P

“

nkM
‰

, if we replace all

appearances ofWb
t in

śnki
j“1 tr

´

ĂMk
ij

¯

ĂMk
i0 and expand all parentheses of

`

W b
t,2W

b
t,2 ´W

˚
2 W

˚
1

˘

, we have

nki
ź

j“1

tr
´

ĂMk
ij

¯

ĂMk
i0 “

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0 , (13)

where ĂMkl
ij ’s are multiplicative terms of parameter matrices

 

W b
t,1,W

b
t,2

(

and constant matrices tW˚
1 ,W

˚
2 u such that

nki
ÿ

j“0

´

deg
´

W b
t,1;

ĂMkl
ij

¯

` deg
´

W b
t,2;

ĂMkl
ij

¯¯

ď 3d`
m
ÿ

r“0

`

deg
`

W b
t,1;Mr

˘

` degpW b
t,2;Mrq

˘

, (14)

where the inequality comes from (11) and (12) and the fact that each gbt,1 or gbt,2 contributes 2 or 0 degrees in the form of
W b
t,2W

b
t,1 or W˚

2 W
˚
1 , respectively.

Combining (9), (10) and (13), we have

E
“

M
ˇ

ˇFbt
‰

“

nM
ÿ

k“1

ˆ

ek,d ` ek,d´1
1

b
` ¨ ¨ ¨ ` ek,0

1

bd

˙

E
”

xMk

ˇ

ˇ

ˇ
Fbt

ı

“

nM
ÿ

k“1

ˆ

ek,d ` ek,d´1
1

b
` ¨ ¨ ¨ ` ek,0

1

bd

˙ n
sk
M
ÿ

i“1

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0

“ N0 `N1
1

b
` ¨ ¨ ¨ `Nd

1

bd
,

where

Nr “
nM
ÿ

k“1

ek,d´r

¨

˝

n
sk
M
ÿ

i“1

2d
ÿ

l“1

nki
ź

j“1

tr
´

ĂMkl
ij

¯

ĂMkl
i0

˛

‚. (15)

Note that all constants in (15) are independent of b and combining with (14), we have finished the proof.
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Proof of Lemma 4. Simply using the fact that W b
t,i “ W b

t´1,i ´ αtg
b
t´1,i, i “ 1, 2, if we replace each W b

t,i in the left-
hand-side of (15) by W b

t´1,i ´ αtg
b
t´1,i and expand all the parentheses, then each Mi, i P r0 :ms becomes the sum of 2di

multiplicative terms of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

with degree at most
di. As a result,

śm
i“1 tr pMiqM0 becomes the sum of 2d terms in the form of

śm
i“1 tr pMikqM0k where deg pMikq ď 2di ,

and therefore
řm
i“0 deg pMikq ď

śm
i“0 2

di “ d.

Proof of Theorem 3. We use induction on t to show this result. The base case of t “ 0 it is the same as the statement in
Lemma 3.

Suppose that the statement holds for t ě 0, and we consider the case of t ` 1. By Lemma 3, there exists a set of
multiplicative terms

 

Mk
t`1,i,j , i P rmt`1,ks, j P r0 :mt`1,k,is , k P r0 : ds

(

of parameter matrices
 

W b
t`1,1,W

b
t`1,2

(

and
constant matrices tW˚

1 ,W
˚
2 u such that

E
“

M
ˇ

ˇFbt`1

‰

“ Nt`1,0 `Nt`1,1
1

b
` ¨ ¨ ¨ `Nt`1,d

1

bd
, (16)

where Nt`1,k “
řmt`1,k

i“1

śmt`1,k,i

j“1 tr
`

Mk
t`1,i,j

˘

Mk
t`1,i,0, k P r0 : ds. Here mt`1,k,mt`1,k,i are constants independent

of b, and
řmt`1,k,i

j“0 deg
`

Mk
t`1,i,j

˘

ď 3d` d1.

For each i P rmt`1,ks and each k P r0 : ds, by Lemma 4, there exists a set of multiplicative terms tMt,i,j,k,l, j P
rmt`1,i,ks , l P rdt,i,ksu of parameter matrices

 

gbt,1, g
b
t,2

(

and constant matrices
 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

such that

mt`1,k,i
ź

j“1

tr
`

Mk
t`1,i,j

˘

Mk
t`1,i,0 “

dt,i,k
ÿ

l“1

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l, (17)

where dt,i,k “ 2
řmt`1,k,i
j“0 pdegpW b

t,1;Mt,i,j,k,lq`degpW b
t,2;Mt,i,j,k,lqq is a constant independent of b and

mt`1,k,i
ÿ

j“0

deg pMt,i,j,k,lq ď 3d` d1, (18)

and
mt`1,k,i
ÿ

j“0

pdeg pWt,1;Mt,i,j,k,lq ` deg pWt,2;Mt,i,j,k,lqq ď 3d` d1. (19)

Combining (16) and (17), we have for every k P r0 : ds

Nt`1,k “

mt`1,k
ÿ

i“1

dt,i,k
ÿ

l“1

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l. (20)

Note that

E rM |F0s “ E
“

E
“

M
ˇ

ˇFbt`1

‰
ˇ

ˇF0

‰

“ E rNt`1,0|F0s ` E rNt`1,1|F0s
1

b
` ¨ ¨ ¨ ` E rNt`1,d|F0s

1

bd

“

mt`1,0
ÿ

i“1

dt,i,0
ÿ

l“1

E

«

mt`1,0,i
ź

j“1

tr pMt,i,j,0,lqMt,i,0,0,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

`

`

mt`1,1
ÿ

i“1

dt,i,1
ÿ

l“1

E

«

mt`1,1,i
ź

j“1

tr pMt,i,j,1,lqMt,i,0,1,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

1

b
` ¨ ¨ ¨`

`

mt`1,d
ÿ

i“1

dt,i,d
ÿ

l“1

E

«

mt`1,d,i
ź

j“1

tr pMt,i,j,d,lqMt,i,0,d,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

1

bd
, (21)
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and each Mt,i,j,k,l is a multiplicative term of parameter matrices
 

gbt,1, g
b
t,2

(

and constant matrices tW b
t,1,W

b
t,2,W

˚
1 ,W

˚
2 u

such that the degree is at most 1. Therefore, by induction, for every i, k, l, we have

E

«

mt`1,k,i
ź

j“1

tr pMt,i,j,k,lqMt,i,0,k,l

ˇ

ˇ

ˇ

ˇ

ˇ

F0

ff

“ Nt,i,k,l,0 `Nt,i,k,l,1
1

b
` ¨ ¨ ¨Nt,i,k,l,qt

1

bqt
, (22)

where qt ď d1 ` 1
2 p3

t ´ 1qp3d ` d1q and Nt,i,k,l,0, ¨ ¨ ¨ , Nt,i,k,l,qt are sum of multiplicative terms of parameter matrices
 

W b
0,1,W

b
0,2

(

and constant matrices tW˚
1 ,W

˚
2 u with degree at most d ¨ 3t.

Combining (21) and (22), we can rewrite

E rM |F0s “ N0 `N1
1

b
` ¨ ¨ ¨ `Nq

1

bq
,

in the same form as in the statement. Here q ď d ` 3qt ď
1
2 p3

t`2 ´ 1qd ` 1
2 p3

t`1 ´ 1qd1 and
řmki
j“0 deg

`

Mk
ij

˘

ď

3ˆ 3tp3d` d1q “ 3t`1p3d` d1q follow from (18) and (19).

In conclusion, we have shown that the statement holds for t` 1, and therefore finishes the proof.

Proof of Corollary 2. We simply note that M can be written as the sum of at most 2d multiplicative terms of parameter
matrices

 

W b
t,1,W

b
t,2,W

˚
1 ,W

˚
2

(

and constant matrix tI0u. Then we apply Lemmas 3 and 4 iteratively in the same way as
in the proof of Theorem 3 to finish the proof.

Proof of Theorem 4. We only show the case for gt,1 since the proof for gt,2 can be tackled similarly. Note that

var
`

gbt,1
ˇ

ˇF0

˘

“ var

˜

1

b

b
ÿ

i“1

W b
t,2

TWb
t xt,ix

T
t,i

ˇ

ˇ

ˇ

ˇ

ˇ

F0

¸

“
1

b2

b
ÿ

i“1

var
´

W b
t,2

TWb
t xt,ix

T
t,i

ˇ

ˇ

ˇ
F0

¯

“
1

b
var

´

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

¯

“
1

b

ˆ

E
„

›

›

›
W b
t,2

TWb
t xt,1x

T
t,1

›

›

›

2
ˇ

ˇ

ˇ

ˇ

F0



´

›

›

›
E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

tr
´

xt,1x
T
t,1Wb

t

T
W b
t,2W

b
t,2

TWb
t xt,1x

T
t,1

¯
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

E
”

tr
´

xt,1x
T
t,1Wb

t

T
W b
t,2W

b
t,2

TWb
t xt,1x

T
t,1

¯
ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

E
”

W b
t,2

TWb
t xt,1x

T
t,1

ˇ

ˇ

ˇ
Fbt

ı
ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

E
”

pp` 2qtr
´

Wb
t

T
W b
t,2W

b
t,2

TWb
t

¯
ˇ

ˇ

ˇ
F0

ı

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
1

b

ˆ

pp` 2qtr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

.

“
1

b

ˆ

pp` 2qtr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

.

Here we have used the fact that Ex„N p0,Ipqtr
`

xxTAxxT
˘

“ pp ` 2qtr pAq. By Corollary 2 we know that there exists
a set of multiplicative terms

 

Mk
ij , i P rmks, j P r0 :mkis , k P r0 : qs

(

of parameter matrices
 

W b
0,1,W

b
0,2

(

and constant
matrices tW˚

1 ,W
˚
2 u such that

tr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

“ γ0 ` γ1
1

b
` ¨ ¨ ¨ ` γq

1

bq
, (23)

where γk “
řmk
i“1

śmki
j“0 tr

`

Mk
ij

˘

, k P r0 : qs. Here mk,mki and q ď 6 ¨ 3t are constants independent of b, and
řmki
j“0 deg

`

Mk
ij

˘

ď 6 ¨ 3t. Note that W b
0,1,W

b
0,2 are fixed, and we have γk, k P r0 : qs are constants independent of b.
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Similarly we observe that there exist constants q1 ď 2 ¨ 3t`1 and γ1k, k P r0 : q
1s such that

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2

“ γ10 ` γ
1
1

1

b
` ¨ ¨ ¨ ` γ1q

1

bq1
. (24)

By defining γi “ 0, i ą q and γ1i “ 0, i ą q1, and combining (23) and (24) we have

var
`

gbt,1
ˇ

ˇF0

˘

“
1

b

ˆ

pp` 2qtr
´

E
”

Wb
t

T
W b
t,2W

b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı¯

´

›

›

›
E
”

W b
t,2

TWb
t

ˇ

ˇ

ˇ
F0

ı
›

›

›

2
˙

“
p` 2

b

ˆ

γ0 ` γ1
1

b
` ¨ ¨ ¨ ` γq

1

bq

˙

´
1

b

ˆ

γ10 ` γ
1
1

1

b
` ¨ ¨ ¨ ` γ1q

1

bq1

˙

“

maxtq,q1u
ÿ

k“1

`

pp` 1qγk ´ γ
1
k

˘ 1

bk
.

Note that γk’s and γ1k’s are all constants independent of b, and max tq, q1u ď 2 ¨ 3t`1. This completes the proof.

Proof of Theorem 5. We first show that in (4) we have β1 ě 0. If r “ 1, the statement obviously holds. Let us assume that
the statement does not hold for r ą 1, i.e. β1 ă 0. Taking b large enough such that β1b

r´1 ` β2b
r´2 ` ¨ ¨ ¨ ` βr ă 0 yields

var
`

gbt,i
ˇ

ˇF0

˘

“
1

br
`

β1b
r´1 ` β2b

r´2 ` ¨ ¨ ¨ ` βr
˘

ă 0,

which contradicts the fact that var
`

gbt,i
ˇ

ˇF0

˘

ě 0. Therefore, we have β1 ě 0.

Let b0 be large enough such that for all b ě b0, we have β1b
r´1 ` 2β2b

r´2 ` ¨ ¨ ¨ ` rβr ě 0. We denote fpbq “
β1

1
b ` β2

1
b2 ` ¨ ¨ ¨ ` βr

1
br ě 0. For all b ą b0 we have

f 1pbq “ ´
1

br`1

`

β1b
r´1 ` 2β2b

r´2 ` ¨ ¨ ¨ ` rβr
˘

ď 0.

Therefore, for all b ą b0 we have
`

var
`

gbt,i
ˇ

ˇF0

˘˘1
“ ´ r

br`1 fpbq `
1
br fpbq ď 0, and thus var

`

gbt,i
ˇ

ˇF0

˘

is a decreasing
function of b for all b ą b0.

B. Experimental Details
In many experiments we fix the initial and ground-truth weights (in the case of Section 3.2), and the learning rate. We have
also tested several other random initial weights and ground-truth weights, and learning rates, and the results and conclusions
are similar and not presented.

B.1. Graduate Admission Dataset with Linear Regression

The dataset is normalized by mean and variance of each feature. For the experiment in Figure 1(a), we randomly select an
initial weight vectors w0 and run SGD for 2,000 iterations where it appears to converge. We record all statistics at every
iteration. There are in total 1,000 runs behind each observation which yields a p-value lower than 0.05. As for Figure 1(b),
we select 20 different b’s and run SGD from the same initial point for 40 iterations. There are in total of 200,000 runs to make
sure the p-value of all statistics are lower than 0.05. In all experiments, the learning rate is chosen to be αt “ 1

2t , t P r2000s
because this rate yields a theoretical convergence guaranteed (factor 1/2 has been fine tuned).

B.2. Synthetic Dataset with Two-layer Linear Network

In Figure 2, we randomly select two initial weight matrices W0,1,W0,2 and the ground-truth weight matrices W˚
1 ,W

˚
2 .

We run SGD for 1,000 iterations which appears to be a good number for convergence while there are 1,000 runs of SGD
in total to again give a p-value below 0.05. We record all statistics at every iteration. The learning rate is chosen to be
αt “

1
10t , t P r1000s for the same reason as in the regression experiment.
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The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent

B.3. MNIST with Fully Connected Neural Network

The images are normalized by mapping each entry to r´1, 1s. We run SGD for 1,000 epochs on the training set which
is enough for convergence. The learning rate is a constant set to 3 ¨ 10´3 (which has been tuned). For the experiment in
Figure 4, there are in total 100 runs to give us the p-value below 0.05. For the experiment in Figure 3(a), we randomly select
five different initial points and we have 50 runs for each initial point.

For the experiment corresponding to Figure 3(b), we choose α “ 8 and σ “ 2 as in (Simard et al., 2013). The initial weights
and other hyper-parameters are chosen to be the same as in Figure 4.

B.4. Yelp with XLNet

We randomly select a set of initial parameters and run Adam with two different mini-batch sizes of 32 and 64. For
computational tractability reasons, for each mini-batch size there are in total of 100 runs and each run corresponds to 20
epochs. We record the variance of the stochastic gradient, loss and accuracy in every step of Adam. The statistics reported in
Figure 5 are averaged through each epoch. In all experiments, the learning rate is set to be 4 ¨ 10´5 and the ε parameter of
Adam is set to be 10´8 (these two have been tuned). The stochastic gradients of all parameter matrices are clipped with
threshold 1 in each iteration. We use the same setup for the learning rate warm-up strategy as suggested in (Yang et al.,
2019). The maximum sequence length is set to be 128 and we pad the sequences with length smaller than 128 with zeros.


