
A Practical Algorithm for Computing a

Subadditive Dual Function for Set Partitioning

Diego Klabjan
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign
Urbana, IL

email: klabjan@uiuc.edu

Abstract

Recently, a new algorithm for computing an optimal subadditive dual
function to an integer program has been proposed. In this paper we show
how to apply the algorithm to the set partitioning problem. We give
several enhancements to the algorithm and we report computational ex-
periments. The results show that it is tractable to obtain an optimal
subadditive function for small and medium size problems. To the best of
our knowledge this is the first work that reports computational experi-
ments on computing an optimal subadditive dual function.

1 Introduction

The linear programming duality has been developed a long time ago and the
dual vector of an LP is used in many algorithms and in sensitivity analysis.
On the other hand, very little is known about an equivalent notion for inte-
ger programming. Gomory (1969) developed subadditive duality for the group
problem and Johnson (1973) extended his theory to integer programs. There
are very few algorithms for computing an optimal subadditive function (OSF).
Burdet and Johnson (1977) and Llewellyn and Ryan (1993) present an algorithm
for computing an OSF but they do not report computational results and they
do not elaborate on how to use the OSF in developing further algorithms or
for sensitivity analysis. Wolsey (1981) addresses sensitivity analysis for integer
programs and he shows how to obtain an OSF from the branch-and-bound tree.

Frequently in integer programming (IP) we would like to estimate the change
of the objective value if we perturb the right hand side. Sensitivity analysis for
IPs is typically done either by considering the dual vector of the LP relaxation
or by resolving the problem after changing the right hand side. Is it possible to
compute a vector or a function that would measure the change in the objective
function of an IP after perturbing the right hand side? A slightly different
scenario is when we are given a new variable and we wonder how the optimal
objective value changes if this variable is added to the formulation. In many
real world problems that are modeled as IPs we would like to obtain alternative
optimal solutions. For example, a decision maker wants to select the most robust
solution among several optimal solutions. All optimal solutions can be found
among the variables with zero reduced cost, which requires an optimal dual
function and a suitable definition of reduced cost. In this work we show that

1

by using appropriate subadditive functions, we can perform sensitivity analysis,
which gives much better results than using LP dual vectors.

Recently, Klabjan (2003) gives a new family of subadditive functions, called
the generator subadditive functions. These functions are easy to encode and
typically easy to evaluate. He presents several properties of generator subad-
ditive functions and various IP related algorithms that use the generator OSF.
He also presents an algorithm that computes a generator OSF. In this paper we
show how to adapt the algorithm to the set partitioning problem

min{cx : Ax = 1, x integer} , (1)

where 1 is a vector with every component equal to 1 and A is an m× n matrix
with 0/1 coefficients. We denote by ai ∈ Rm column i of A and by aj ∈
Rn row j of A. We give several enhancements to the algorithm presented in
Klabjan (2003), and we present computational experiments. To the best of our
knowledge this paper is the first paper that reports computational results on
obtaining an OSF. In addition, we show how to construct a generator OSF from
a generator OSF of the preprocessed problem.

In Section 2 we list the preprocessing rules together with three new rules.
Algorithmic enhancements for set partitioning are given in Section 3. An inter-
esting row generation procedure is presented in this section and some other im-
plementation details. How to construct a generator OSF from the preprocessed
problem is shown in Section 4. Section 5 reports extensive computational exper-
iments. We conclude the introduction with a brief description of the algorithm
for computing a generator OSF from Klabjan (2003).

Algorithm for Obtaining a Generator Optimal Subadditive Function

Johnson (1973) showed that

min cx

Ax = 1

x integer
=

max F (1)
F (ai) ≤ ci i = 1, . . . , n

F subadditive ,

(2)

where subadditivity is defined as F (d1 + d2) ≤ F (d1) + F (d2) for every pair of
vectors d1 and d2 in Rm. We say that function F is dual feasible if F (ai) ≤ ci

for all i = 1, . . . , n, and the value of a subadditive function F is F (1).
For simplicity of exposition, we assume that (1) is feasible (see Klabjan

(2003) for treatment of infeasible problems) and we denote the variables indices
as N = {1, 2, . . . , n}. Given a vector α ∈ Rm, we define a generator subadditive
function Fα : Rm → R as

Fα(d) = αd−max
∑
i∈E

(αai − ci)xi

AEx ≤ d

x integer ,

where E = {i ∈ N : αai > ci} is a generator set and AE is the submatrix of A
corresponding to the columns in E. Similarly we denote cE . For simplicity of
notation we write H = N \ E and whenever an ambiguity can occur we write
E(α) instead of simply E. It is easy to see that Fα is a dual feasible subadditive
function. It is shown in Klabjan (2003) that there exists a generator OSF, i.e.
there exists a generator subadditive function Fα with Fα(1) = zIP, where zIP

2

is the optimal value to (1). We say that Fα is optimal over S ⊆ N if it is a
generator OSF to the IP min{cSx : ASx = 1, x integer}.

Next we outline the algorithm that finds an optimal solution to (1) and
computes a generator OSF, Algorithm 1. We first reduce the problem size by
preprocessing (see Section 2) and next we add clique inequalities. If the LP
relaxation with clique inequalities gives an integral solution, then a generator
OSF is readily available by selecting α as the optimal dual vector corresponding
to constraints Ax = 1 (see Klabjan (2003)). The algorithm then proceeds in
two stages. In the first stage, consisting of steps 3-10, we find an approximate
generator OSF and an optimal primal solution. The second stage (steps 11-
29) starts with the subadditive function from the first stage and it computes a
generator OSF.

1: Preprocess the problem.
2: Add clique inequalities.
3: U = {0}, V = {ei : i ∈ N}, α = optimal dual vector of the LP relaxation,

zIP = −∞.
4: loop
5: Choose a vector x̄ ∈ V .
6: U = U ∪ {x̄}, V = V ∪ {x̄ + ei : i ∈ N such that xi = 0, and y ∈

U for every y < x̄ + ei}
7: Update α by solving D(U, V). Let π∗0 be the optimal value.
8: zIP = max{zIP, π∗0}
9: If zIP = min{cx : x ∈ V,Ax = b}, then we have an optimal primal IP

solution and goto step 11.
10: end loop
11: E = {i ∈ N : αai ≥ ci} and let H be a subset, with given small cardinality,

of columns i with the lowest but negative αai − ci. Set S = E ∪H.
12: Solve (3) with E := S and update α and E.
13: S = S ∪ {i ∈ N \ S : αai ≤ ci}
14: Further expand S.
15: Let j be a column where max{αai − ci : i ∈ N \ S} is attained and set

S = S ∪ {j}, E = E ∪ {j}.
16: loop
17: Solve (3) with A = AS , S = E ∪H, and let α be the optimal solution and

η∗ the objective value.
18: if η∗ = zIP then
19: if S = N then
20: Fα is a generator OSF and exit.
21: else
22: Let j be a column where max{αai − ci : i ∈ N \ S} is attained.
23: S = S ∪ {j}, E = E ∪ {j}.
24: end if
25: else
26: Select a subset Ẽ of columns from S \ E and set E = E ∪ Ẽ.
27: S = S ∪ {i ∈ N \ S : αai ≤ ci},H = S \ E
28: end if
29: end loop
30: Construct a generator OSF of the original problem.

Algorithm 1: The algorithm for computing a generator OSF

3

Given a fixed E, the generator subadditive function with the largest objective
value corresponds to a solution of the LP

max η (3a)

η + α(AEx− 1) ≤ cEx for all AEx ≤ 1, x integer (3b)
αai ≤ ci i ∈ H (3c)

(η, α) ∈ R× Rm . (3d)

Constraints (3b) capture the objective value of the resulting generator subad-
ditive function, (3c) express that for columns in H we must have αai ≤ ci.
The basic idea of the algorithm is to iteratively expand E, i.e. move columns
from H to E, and then to update α by solving (3). However, solving this
LP directly is computational expensive due to a possible large number of con-
straints (3b). To circumvent this, we approximate generator subadditive func-
tions (first stage of the algorithm) by considering only a subinclusive subset U
of {x ∈ Zn

+ : AEx ≤ 1}. We say that a set U ⊆ Rn is subinclusive if for every
x ∈ U and y ≤ x it follows y ∈ U .

We now work with functions from Rn to R. Let S(x) = {y ∈ Zn
+ : y ≤ x}.

Given a subinclusive U ⊆ Zn
+ and a vector α we define

π(x) = αAx− max
y∈U

y∈S(x)

{(αA− c)y} . (4)

We say that π is dual feasible if π(ei) ≤ ci for every i ∈ N . If π is dual feasible
and subadditive, and x is feasible to the IP, then

π(x) ≤
∑
i∈N

π(ei)xi ≤ cx . (5)

Therefore π provides weak duality. It can be shown that these modified sub-
additive functions still provides strong duality, Klabjan (2003). If |U | is much
smaller than |{x ∈ Zn

+ : AEx ≤ 1}|, then π has the advantage over the generator
functions since it is easier to evaluate. On the other hand, it is harder to encode
π since we need to store α and U . π does solve the IP but however it does
not serve the purpose of the generator subadditive functions (e.g. sensitivity
analysis) since it is defined on Rn.

We have relaxed our problem to the problem of solving

max
π

max
x∈Zn

+
Ax=b

π(x)

π(ei) ≤ ci i ∈ N (6)
π subadditive .

This optimization problem is solved by using the same framework of gradually
expanding U . We start with U = ∅ and we gradually enlarge it. After every
expansion we recompute α so as to maximize the objective value of π. Given
U , we define V = {x ∈ Zn

+ : x /∈ U, S(x) \ {x} ⊆ U}. π is subadditive if and
only if αAx ≤ cx for every x ∈ V . Given U and V , α that gives the largest dual
objective value is an optimal solution to

max π0

D(U, V) π0 + α(Ay − 1) ≤ cy y ∈ U (7)
αAx ≤ cx x ∈ V (8)

α unrestricted, π0 unrestricted .

4

(7) capture the objective value and (8) assure that π stays subadditive. In other
words, we maximize the dual objective value while maintaining subadditivity.

Steps 3-10 of the algorithm consist of solving (6). Steps 5 and 6 expand U
and update V . It is easy to check that V satisfies the definition. In step 7 we
update α and steps 8 and 9 update the dual and the primal value, respectively.

Steps 11-13 convert the optimal π into an initial generator subadditive func-
tion. The main idea is based on U ⊆ {x ∈ Zn

+ : AEx ≤ 1}. To this end, we
define E as in step 11. After step 12, Fα is a generator OSF over a subset S
of N . If S = N , then we have a generator OSF. In Section 3 we elaborate on
step 14. In the remaining steps we gradually extend S. Given E and S, in step
17 we find a generator subadditive function with the largest objective value. If
we find a generator OSF over S, in steps 22 and 23 we add a new column to S.
Otherwise, in steps 26 and 27 we expand E. Finally, at the end, we convert the
generator OSF of the preprocessed problem into a generator OSF of the original
problem. We call steps 15-29 the enlarge generator algorithm.

The bottleneck of stage 3 is in solving (3). This LP is hard to solve due to
the large number of constraints (3b). In Section 3.2 we present a row generation
algorithm.

2 Preprocessing

In this section we list the preprocessing rules for set partitioning and we give
three new rules. All of the rules are needed in Section 4.

Preprocessing is a powerful technique that can substantially reduce compu-
tational times, Savelsbergh (1994). Recent research on applying preprocessing
to set partitioning is given by Eso (1999) and Borndorfer (1998). In the former
work it is shown that the order in which different preprocessing rules are applied
does not influence the produced preprocessed problem, while the latter work has
a comprehensive list of preprocessing rules and a probabilistic analysis of their
usefulness.

2.1 Preprocessing Rules

For a vector x we denote supp(x) = {i : xi > 0} and ei is the ith unit vector. We
use the following preprocessing rules, where for two sets S1 and S2 the notation
S1 ⊕ S2 denotes the symmetric difference, i.e. S1 ⊕ S2 = (S1 \ S2) ∪ (S2 \ S1).

P1 (Duplicate column) If aj = ak, j 6= k and aj ≥ ck, then we eliminate
column j.

P2 (Dominated row) If supp(ai) ⊆ supp(al), i 6= l, then we

1) eliminate all columns j ∈ supp(al) \ supp(ai),

2) eliminate row i.

P3 (Row clique) If there exist row i and column j such that j /∈ supp(ai) and
supp(aj)∩ supp(ak) 6= ∅ for every k ∈ supp(ai), then we eliminate column
j.

P4 (Symmetric difference) If there exist rows i, l, r, i 6= l, i 6= r, l 6= r such that
supp(ar)⊕ supp(al) ⊆ supp(ai), then

1) eliminate all columns in supp(ar)⊕ supp(al),

5

2) eliminate row l.

P5 (Row singleton) If there exist row i and column j such that ai = ej , then
we

1) eliminate column j, since xj = 1 in an optimal solution,

2) eliminate all columns k with supp(ak)∩ supp(aj) 6= ∅,
3) eliminate all rows l ∈ supp(aj).

P6 (Parallel column) If there exist two rows i, l, i 6= l and two columns j, k, j 6=
k such that ai ⊕ al = ej + ek, then

1) eliminate row l,

2) eliminate columns j and k if supp(aj)∩ supp(ak) 6= ∅,
3) merge columns j and k into a new column u, au = aj + ak with cost

cu = cj + ck, otherwise.

P7 (Column singleton) If there exist a column j and a row i such that aj = ei

and (supp(ap)∩ supp(aq)) \ {i} 6= ∅ for all {p, q} ∈ supp(ai) \{j}, then

1) change ck = ck − cj for every k ∈ supp(ai) and zIP = cj + z̄IP, where
z̄IP is the optimal value of the preprocessed problem,

2) eliminate column j,

3) eliminate row i.

P8 (Dominated by symmetric difference) If there exist rows i, l, r, i 6= l, i 6=
r, l 6= r such that supp(ai) ⊆ supp(ar)⊕ supp(al), then we eliminate all
columns in supp(ar)∩ supp(al).

P9 (Half parallel column) If there exist rows i, l, i 6= l such that for a column
j we have supp(ai) \ supp(al) = ej , then we eliminate all columns k ∈
supp(al) such that supp(aj)∩ supp(ak) 6= ∅.

Borndorfer (1998) lists rules P1-P6 and some additional rules that we did
not implement since they are computationally expensive. Rule P7 is an ex-
tension of a rule presented in Borndorfer (1998). To show its correctness note
that the condition says that column j is a singleton and supp(ai) \{j} is a
clique in Ã, where Ã is A without row i. Therefore

∑
p∈supp(ai) \{j} xp ≤ 1 is

a valid inequity for {Ãx ≤ 1, x integer} and we can make a variable substi-
tution xj =

∑
p∈supp(ai) \{j} xp. Since in real-world set partitioning instances

there are not many column singletons, it is computationally tractable to check
that supp(ai) \{j} is a clique. To check validity of P8, note that if xp = 1
for a p ∈ supp(ar)∩ supp(al), then xq = 0 for all q ∈ supp(ar)⊕ supp(al) and
therefore aix = 0. Similarly we can show rule P9.

We implemented these rules using the techniques from Eso (1999) and Born-
dorfer (1998). Before we start with preprocessing, we lexicographically sort all
of the columns and then, as suggested by Eso (1999), we maintain this order in
every reduction. This technique allows an efficient check for duplicate columns.
All other rules are implemented as in Borndorfer (1998). Namely, row cliques
are checked only for rows with less than 16 elements and rules P6 and P8 are
implemented using the intersection technique.

6

3 Algorithmic Enhancements to the Second Stage

3.1 Extension Heuristic

In this section we elaborate on the enlarge generator algorithm. Steps 15-29
start with a generator OSF over S, where S ⊆ N , and we obtain a generator
OSF over N . A fast heuristic, called the LP based expansion heuristic, based
on linear programming is presented in Klabjan (2003), which further extends S
by adjusting α. This heuristic is employed in step 14. The resulting generator
function is not necessarily a generator OSF over N but in many instances N \S
has only a few columns. Here we give a new procedure that can further decrease
N \ S and it requires solving an LP over a large number of rows but with
polynomial separation.

Let Fα be a generator OSF over S and let C ⊆ N \ S be such that the
objective value of the LP

min
∑
i∈E

(ci − Fα(ai))xi +
∑
i∈H

(ci − αai)xi +
∑
i∈C

(ci − αai)yi

ASx + ACy = 1

0 ≤ x, 0 ≤ y

(9)

is greater or equal to 0. It is shown in Klabjan (2003) that Fα+γ is a generator
OSF over S ∪ C, where γ is the optimal dual vector of (9). This claim is the
cornerstone to the LP based expansion heuristic. Here we give a stronger result
for set partitioning.

Assume that C = {k}. The variables in the set partitioning formulation are
integer and therefore we should require in (9) that yk is integer. Note that if we
fix yk = 0, then the optimal solution to (9) is integral. The objective value of (9)
can be negative even if we require that x and y be integer. If it is nonnegative,
then we can expand S based on the following proposition. Denote

R = {(u, ū, w, π, πk) ∈ Rm
+ × Rm

+ × R+ × R|S| × R :

π − uAS ≤ 0 (10)

π − ūAS ≤ 0 (11)
1u ≤ 1 (12)

πk − ūak + w ≤ 0 (13)
1ū− w ≤ 1} (14)

and let (uj , ūj , wj , πj , πj
k), j ∈ J be the set of all extreme points of R.

Proposition 1. Let Fα be a generator OSF over S and k ∈ N \ S. Let dj = 0
for j ∈ E and dj = cj − αaj for every j ∈ (S ∪ {k}) \ E and assume that

dk + min dx

ASx = 1− ak

x ≥ 0

(15)

is greater or equal to 0. Let (ᾱ, λ̄) ∈ Rm × R|J|
+ be an optimal dual vector to

min dx + dkyk (16a)

ASx + akyk = 1 (16b)

πjx + πj
kyk ≤ 1 j ∈ J (16c)

x ≥ 0, yk ≥ 0 , (16d)

7

where ᾱ corresponds to (16b). Then Fα+ᾱ is a generator OSF over S ∪ {k}.

Proof. It is easy to see that from disjunctive programming, see e.g. Wolsey
(1998), pp. 130-133, it follows that conv{(x, yk) ∈ R|S|

+ × {0, 1} : ASx + akyk ≤
1} = {(x, yk) ∈ R|S|

+ × R+ : πjx + πj
kyk ≤ 1 for all j ∈ J}. Note that by

selecting, for any row i, vectors π = ai, u = ū = ei, w̄ = 0, πk = aik, which are
in R, we get precisely the rows of ASx + akyk ≤ 1.

By definition of π, we have that (16) is equivalent to

min dx + dkyk

ASx + dkyk = 1

x ≥ 0, yk integer .

(17)

If yk = 0 in (17), then the objective value is 0. (By complementary slackness,
the optimal IP solution gives an objective value 0 and all the coefficients are
nonnegative since Fα is dual feasible). If yk = 1, then the objective value is
nonnegative by (15). We conclude that the optimal value of (17) is 0 and this
implies that the objective value of (16) is 0.

The dual of (16) is

max1α̃− 1λ

aiα̃−
∑
j∈J

πj
i λj ≤ di i ∈ S ∪ {k} (18)

α̃ unrestricted, λ ≥ 0 .

Let (ᾱ, λ̄) be an optimal solution. Then 1ᾱ = 1λ̄.
For simplicity of notation we denote γ = α + ᾱ. We need to show that

max{(γAE−cEx : AEx ≤ 1, x integer} ≤ 1γ, where E ⊆ S∪{k} is the generator
set of Fγ . Let x be a integer vector with AEx ≤ 1 and let L = supp(x)∩S.

First assume that either k /∈ E or xk = 0. We have∑
i∈E

(ᾱai − di)xi =
∑
i∈L

(ᾱai − di) ≤
∑
i∈L

∑
j∈J

πj
i λ̄j (19)

=
∑
j∈J

λ̄j

∑
i∈L

πj
i ≤

∑
j∈J

λ̄j

∑
i∈L

ujai (20)

=
∑
j∈J

λ̄ju
j
∑
i∈L

ai ≤
∑
j∈J

λ̄ju
j1 (21)

≤
∑
j∈J

λ̄j = 1λ̄ = 1ᾱ , (22)

where (19) follows from (18). (20) holds because of nonnegativity of λ̄, (10),
and L ⊆ S. Inequality (21) follows from AEx ≤ 1, λ̄ ≥ 0, uj ≥ 0, and (22)
follows from (12).

Now assume that k ∈ E and xk = 1. Then we have∑
i∈E

(ᾱai − di)xi =
∑
i∈L

(ᾱai − di) + ᾱak − dk ≤
∑
j∈J

λ̄j ū
j
∑
i∈L

ai +
∑
j∈J

πj
kλ̄j (23)

≤
∑
j∈J

λ̄j ū
j(1− ak) +

∑
j∈J

λ̄j(ūjak − wj) (24)

=
∑
j∈J

λ̄j(1ūj − wj) ≤
∑
j∈J

λ̄j = 1ᾱ , (25)

8

where (23) follows as above by using (11) and (18) for i = k. Inequality (24) is
obtained from (13) and since AEx ≤ 1, λ̄ ≥ 0, ūj ≥ 0. (25) follows from λ̄ ≥ 0
and (14).

We conclude that
∑

i∈E(ᾱai − di)xi ≤ 1ᾱ. For any integer x with AEx ≤ 1
we have

(γAE − cE)x = (αAE − cE + dE)x + (ᾱAE − dE)x

≤
∑
i∈E

(αai − ci)xi + 1ᾱ ≤ 1α− zIP + 1ᾱ = 1γ − zIP ,

where we use di = 0 for every i ∈ E, and Fα(1) = zIP. This shows that
Fγ(1) ≥ zIP, which completes the proof.

Note that if the optimal value to (9) is negative for every variable in N \S, it
can still happen that the optimal value to (15) is nonnegative. In Algorithm 1,
step 14, we first apply the LP based extension heuristic and then for each
variable i in N \S we solve (15). If the objective value of this LP is nonnegative,
we solve (16) by row generation, set α = α + ᾱ, and S = S ∪ {i}. We call this
additional step the enhanced expansion heuristic.

3.2 Solving (3)

To obtain a generator OSF over S, we need to gradually add columns to E,
step 26. Each time we add a column to E, we need to update the generator
subaddative function by solving (3), step 17. This LP has a large number of
rows due to the large number of feasible solutions to {AEx ≤ 1, x integer} and
therefore it is solved by row generation. Given an optimal solution (η∗, α∗) to
(3) with only a subset of rows (3b), we have to find the most violated row by
solving the set packing problem

z∗ = max{(α∗AE − cE)x : AEx ≤ 1, x integer} . (26)

If z∗ ≤ 1α∗− η∗, then (η∗, α∗) is an optimal solution to (3). Otherwise, we add
the constraint η + α(AEx∗ − 1) ≤ cEx∗ to (3), where x∗ is an optimal solution
to (26), and we repeat the procedure.

Since in general, (26) is NP-hard, solving this problem at every iteration
with a commercial branch-and-cut solver to optimality is too time consuming
and therefore we solve (26) approximately. It has been observed in the past that
if the separation problem is solved approximately, then it is beneficial to add
several rows at once. Therefore we have developed a heuristic that generates
several “good” solutions. In the context of set covering, Balas and Carrera
(1996) assign to each column several greedy estimates and they generate several
set covers by randomly selecting an estimate type. We use their idea to generate
initial set packing solutions. For simplicity of notation let d = α∗AE − cE , let
ti be the number of nonzero elements in column i, and let E = {i1, i2, . . . , i|E|}.
For every column ij ∈ E we define the greedy estimates

g1
ij

= dij g2
ij

=
dij

tij

g3
ij

=
dij

1 + log tij

g4
ij

=
dij

1 + tij
log tij

g5
ij

=
dij

t2ij

g6
ij

=

√
dij

t2ij

.

Several random set packing solutions are obtained by repeating 4 times the
following procedure. We first choose a random estimate type k, i.e. k is a

9

random number between 1 and 6. Next we greedily find a set packing x̄ based on
the greedy estimates gk. We find additional set packing solutions by randomly
selecting an element to either add to or remove from the set packing x̄. To
obtain high cost set packing solutions, we want to remove elements with low
cost and add elements with high cost. Let X be a random variable that selects
an element from E. We define the probability distribution of X as

P [X = ij] =

{
dij

/w x̄ij
= 0

(M − dij
)/w x̄ij

= 1 ,

where M = max{dij
: x̄ij

= 1} and w =
∑

ij :x̄ij
=0 dij

+
∑

ij :x̄ij
=1(M − dij

).
Note that the probability distribution depends on x̄.

To generate alternative set packing solutions resulting from x̄, we iterate
the following K times, where K is a parameter. Generate a random number l
based on X. If x̄l = 1, then we set x̄l = 0. If x̄l = 0 and x̄ + el is a feasible
solution to (26), then we set x̄l = 1. Every time we find a different x̄, we add
the corresponding constraint (3b) to the current LP if it is violated.

If this row generation procedure does not find a single violated constraint,
then we solve (26) to optimality by a branch-and-cut algorithm.

To further reduce the computational time for solving (3) we use comple-
mentary slackness, Klabjan (2003). Recall that in the first stage we obtain
an optimal solution x∗ to the set partitioning problem. By complementary
slackness it follows that in a generator OSF Fα we have αai ≥ ci for every col-
umn i ∈ supp(x∗). Therefore we can assume that the columns in supp(x∗)
are in E. If we include them explicitly in E, then (26) becomes hard to
solve, leading to high execution times. Instead we consider some of them
only implicitly in E. We denote by E′ ⊆ E the set of columns that are
included explicitly. In each iteration of the enlarge generator algorithm, let
R = {i ∈ supp(x∗) : supp(ai)∩ supp(aj) = ∅ for every j ∈ E′}. We maintain
the property that E = E′ ∪R. By definition of R, and since x∗ is a set packing
vector with di ≥ 0 for every i ∈ supp(x∗), it follows that z∗ from (26) is equal to∑

i∈R di +max{dx : AE′
x ≤ 1, x integer}. Thus in separation it suffices to solve

max{dx : AE′
x ≤ 1, x integer}. Every time we add a new column j /∈ supp(x∗)

to E, we need to reduce R and expand E′.
This strategy reduces the computational time for solving (3) on average by

50%. In early iterations, when E′ is small, the reduction is larger. As E′

grows, more columns have to be moved from R to E′ and the benefit gradually
disappears.

4 Reconstructing the Generator OSF

At the beginning of the algorithm for finding a generator OSF we reduced the
problem by preprocessing (step 1). Let

min{c̄x : Āx = 1, x integer} (27)

be the preprocessed problem. We denote by N̄ = {1, . . . , n̄}, M̄ = {1, . . . , m̄}
the set of all the variables and rows, respectively. A column j and a row i of Ā
are denoted by āj and āi, respectively. In steps 2-29 the algorithm computes a
generator OSF Fᾱ for this preprocessed problem. Next we show how to construct
a generator OSF of the original problem from Fᾱ (step 30 in the algorithm).

10

Suppose that (27) is obtained from (1) after a single application of a rule
P1-P9. We need to show how to obtain a generator OSF to (1) from a generator
OSF Fᾱ to (27). It suffices to consider only a single application of a rule since
the argument can be repeated. For most of the rules the construction is based
on the following proposition, where E and H are defined with respect to ᾱ.

Proposition 2. Let r be a row of Ā and let ān̄+1 ∈ {0, 1}m̄ be a new column
with cost c̄n̄+1 such that r /∈ supp(ān̄+1) and

∑
i∈supp(ār) xi +xn̄+1 ≤ 1 is a valid

inequality for conv{Āx + ān̄+1xn̄+1 ≤ 1 : (x, xn̄+1) ∈ Zn̄+1
+ }. Then the LP

min1y (28a)
āiy ≤ 0 i ∈ E \ supp(ār) (28b)
āiy ≤ c̄i − ᾱāi i ∈ H \ supp(ār) (28c)

(āi − 1)y ≤ 0 i ∈ E ∩ supp(ār) (28d)
(āi − 1)y ≤ c̄i − ᾱāi i ∈ H ∩ supp(ār) (28e)

(ān̄+1 − 1)y ≤ c̄n̄+1 − ᾱān̄+1 (28f)
1y ≥ 0 (28g)

has an optimal solution y∗ and Fᾱ+y∗ is a generator OSF for min{c̄x+c̄n̄+1xn̄+1 :
Āx + ān̄+1xn̄+1 = 1 : (x, xn̄+1) ∈ Zn̄+1

+ }.

Proof. Consider the LP

min
∑

i∈H∪{n̄+1}

(c̄i − ᾱāi)xi (29)

Āx + ān̄+1xn̄+1 = 1

ārx + xn̄+1 ≤ 1 (30)
x ≥ 0, xn̄+1 ≥ 0 .

Since r /∈ supp(ān̄+1) and ārx = 1 for any (x, xn̄+1) that is feasible to this
LP, it follows that xn̄+1 = 0. Note that the objective coefficients in (29) are
nonnegative, except possibly for the coefficient corresponding to xn̄+1. The
optimal IP solution to (27) gives a solution of value 0 and therefore the objective
value of this LP is 0. If (ȳ, ū) is an optimal dual vector, where ū corresponds
to (30), then 1ȳ = ū ≥ 0. Now it is easy to see that ȳ is feasible to (28) and
therefore (28) clearly has an optimal solution.

Let y∗ be an optimal solution to (28). First note that since y∗ satisfies (28c),
we have E(ᾱ+ y∗) ⊆ E ∪ supp(ār)∪{n̄+1}. Let z̄ = max{(ᾱĀE − c̄)x : ĀEx ≤
b, x ∈ Z|E|

+ }. Consider S ⊆ E(ᾱ+y∗) ⊆ E∪supp(ār)∪{n̄+1} ⊆ N̄∪{n̄+1} such
that

∑
i∈S āi ≤ 1 and let C = S ∩ (supp(ār)∪{n̄ + 1}). Since

∑
i∈supp(ār) xi +

xn̄+1 ≤ 1 is a valid inequality to conv{Ax + ān̄+1xn̄+1 ≤ 1 : (x, xn̄+1) ∈ Zn̄+1
+ },

it follows that |C| ≤ 1.
Suppose first that C ⊆ E. Then we have∑

i∈S

(ᾱāi + y∗āi − c̄i) =
∑

i∈S\C

(ᾱāi + y∗āi − c̄i) +
∑
i∈C

(ᾱāi + y∗āi − c̄i)

≤
∑

i∈S\C

(ᾱāi − c̄i) +
∑
i∈C

(ᾱāi − c̄i) + 1y∗

=
∑
i∈S

(ᾱāi − c̄i) + 1y∗ ≤ z̄ + 1y∗

11

since from (28b) it follows y∗āi ≤ 0 for i ∈ S \ C, and ᾱāi + y∗āi − c̄i ≤
ᾱāi − c̄i + y∗1 from (28d) for i ∈ C.

Let now C ⊆ (H ∩ supp(ār)) ∪ {n̄ + 1}. Then from either (28e) or (28f) it
follows that

ᾱāi + y∗āi − c̄i ≤ ᾱāi − c̄i + y∗1 + c̄i − ᾱāi = 1y∗

for i ∈ C. Therefore from (28c) and the above inequality we obtain∑
i∈S

(ᾱāi + y∗āi − c̄i) ≤
∑

i∈S\C

(ᾱāi − c̄i) + 1y∗ ≤ z̄ + 1y∗ .

This shows that Fᾱ+y∗(1) ≥ ᾱ1 − z̄. Since min{c̄x + c̄n̄+1xn̄+1 : Āx +
ān̄+1xn̄+1 = 1 : (x, xn̄+1) ∈ Zn̄+1

+ } = min{c̄x : Āx = 1 : x ∈ Zn̄
+}, it follows that

Fᾱ+y∗ is the desired generator OSF. Note that the value of any dual feasible
subadditive function provides a lower bound on zIP.

Now we show how to obtain a generator OSF for (1) given a generator OSF
Fᾱ of (27) and a single application of a rule P1-P9 . For each rule we use the
notation that appears in the description of the rule (see Section 2).

1. (Duplicate column) The same generator subadditive function can be used.

2. (Dominated row) Define

α̃j =

{
ᾱj j ∈ N̄ − {i}
ᾱi/2 j = i or j = l .

(31)

Then it is easy to see that Fα̃ is a generator OSF for min{c̄x :
[
Ā
āi

]
x = 1, x ∈

Zn̄
+}, where āi is a duplicate row to l in Ā. The eliminated columns from

supp(al) \ supp(ai) do not intersect āi and we can apply Proposition 2 for every
eliminated column. For the first column we use ᾱ = α̃ and for every subsequent
column we use ᾱ obtained after adding the previous column.

3. (Row clique) We can directly apply Proposition 2.

4. (Symmetric difference) Define

α̃p =

{
ᾱp p ∈ N̄ \ {r}
ᾱi/2 p = r or p = l .

As above Fα̃ is a generator OSF for min{c̄x :
[
Ā
āl

]
x = 1, x ∈ Zn̄

+}, where āl is

a duplicate row to r in Ā. Denote by S1 = {j ∈ N : j ∈ supp(ar) \ supp(al)}
and by S2 = {j ∈ N : j ∈ supp(al) \ supp(ar)}. Now we first introduce columns
from S1 by applying Proposition 2 with row l and starting with ᾱ = α̃. Then
for columns in S2 we apply Proposition 2 with row r.

5. (Row singleton) Let

M = min{
cp −

∑
v∈supp(ap),v≤m̄ ᾱv

| supp(aj) |
: supp(ap)∩ supp(aj) 6= ∅, p 6= j} . (32)

12

Note that the minimum is taken over all columns that have been removed except
column j. Define

αq =

ᾱq q /∈ supp(aj)
M q ∈ supp(aj) \{i}
cj −M(| supp(aj) | − 1) q = i .

For p = 1, . . . , n̄ we have αap = ᾱāp. By the definition of M , for every column
p with supp(ap)∩ supp(aj) 6= ∅, p 6= j it follows

αap =
∑

v∈supp(ap),v≤m̄

ᾱv + M | supp(ap)∩ supp(aj) |

≤
∑

v∈supp(ap),v≤m̄

ᾱv + M | supp(aj) | ≤ cp .

For p = j we have αap = cp by the definition of α. This shows that the
generator sets of Fᾱ and Fα are identical and since α1 = ᾱ1+ cj , it follows that
Fα(1) = Fᾱ(1) + cj .

6. (Parallel column)

Case 1.) Let supp(aj)∩ supp(ak) 6= ∅. Define α̃q as ᾱq if q ∈ N̄ \ {i, l} and
as ᾱi/2 for q = i, q = l. By applying Proposition 2 twice we get the desired
generator OSF.

Case 2.) Let supp(aj)∩ supp(ak) = ∅ and u ∈ H. Without loss of generality we
assume that j ∈ supp(ai). Then

ᾱāu = ᾱ(aj − ei) + ᾱ(ak − el) + ᾱi ≤ c̄u = cj + ck . (33)

Define

αq =

ᾱq q 6= i, q 6= l

cj − ᾱ(aj − ei) q = i

ᾱi − cj + ᾱ(aj − ei) q = l .

Since αi + αl = ᾱi, we have αap = ᾱāp for all p ∈ N̄ . We also have

αaj = α(aj − ei) + αi = ᾱ(aj − ei) + αi = cj ,

αak = α(ak − el) + αl = ᾱ(ak − el) + ᾱi − cj + ᾱ(aj − ei) ≤ ck ,

where the last inequality follows from (33). This shows that the generator sets
of Fᾱ and Fα are identical. Since αi + αl = ᾱi, it is easy to see that Fα is a
generator OSF.

Case 3.) Let supp(aj)∩ supp(ak) = ∅ and u ∈ E. Without loss of generality we
assume that j ∈ supp(ai). Let K = ᾱ(aj − ei) + ᾱ(ak − ei) + ᾱi − cj − ck > 0.
Next we define

αq =

ᾱq q 6= i, q 6= l

ᾱi − ck + ᾱ(aj − ei) q = i

ᾱi − cj + ᾱ(ak − ei) q = l .

Note that αi + αl = ᾱi + K. We need to show that max{(αAE − cE) : AEx ≤
1, x integer} ≤ K +max{(ᾱAE − cE) : AEx ≤ 1, x integer}. If S ⊆ E such that∑

p∈S ap ≤ 1, then this can be easily shown by a case analysis if
∑

p∈S ap covers
either i or l. Since αi + αl = ᾱi + K, it follows that Fα is a generator OSF.

13

4. (Column singleton) Define αp = ᾱp for all p ∈ N̄ and αi = cj . It is easy to
see that Fα has the desired property.

5. (Dominated by symmetric difference) We use Proposition 2 with row i.

6. (Half parallel column) We use Proposition 2 with row i.

If (27) is the final preprocessed problem obtained after applying rules P1-P9
several times and in several rounds, then we can apply the above procedures
several times to construct a generator OSF for (1). We can apply in turn
these procedures since each one of them yields a generator subadditive function
for the induced set partitioning problem. Every application of a preprocessing
rule requires at most solving an LP and therefore the entire procedure is not
computationally intensive.

Example. Consider the following set partitioning problem.

c̄ = (2,−0.5,−2, 3, 4,−3,−1)

Ā =

1 1 0 0 0 1 1
0 0 1 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 1 1 1

The objective value of the LP relaxation is -3 and the optimal IP solution is
x2 = x3 = 1 with zIP = −2.5. ᾱ = (−3,−1, 0.5, 2.5) yields a generator OSF
with E = {3, 6, 7}, ᾱĀ− c̄ = (−4.5, 0, 1.5,−1.5,−1, 1.5, 1).

We show how to construct the generator OSF based on the presented tech-
nique for the following two cases.

c1 = (2,−0.5,−2, 3, 4,−3,−1,−5)

A1 =

1 1 0 0 0 1 1 1
0 0 1 1 0 1 0 1
1 0 1 0 1 0 1 1
0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 1

c2 = (2, 2,−0.5,−2, 3, 4,−3,−1, 3)

A2 =

1 1 1 0 0 0 1 1 0
0 0 0 1 1 0 1 0 0
1 1 0 1 0 1 0 1 0
0 0 1 0 1 1 1 1 0
1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1

First consider min{c1x : A1x = 1, x ∈ Z8

+}. Row 5 is dominated by
row 4. By rule P2 we can remove row 5 and all the columns that are in
supp(a5) \ supp(a4), i.e. column 8. The resulting problem is min{c̄x : Āx =
1, x ∈ Z7

+} with a generator OSF Fᾱ. To obtain a generator OSF for the set
partitioning problem given by c1 and A1, first define α̃ = (−3,−1, 0.5, 1.25, 1.25)
as indicated by (31). We have H \ supp(a4) = {1},H ∩ supp(a4) = {2, 4, 5}, E \
supp(a4) = {3} and E ∩ supp(a4) = {6, 7}. Next we solve (28), which in this
case reads

min y1 + y2 + y3 + y4 + y5

y1 + y3 ≤ 4.5 −y2 − y3 ≤ 0 y2 + y3 ≤ 0
−y1 − y3 ≤ 1.5 −y1 − y2 ≤ 1 −y4 ≤ −2.75

−y3 ≤ 0 −y2 ≤ 0 y1 + y2 + y3 + y4 + y5 ≥ 0 .

An optimal solution is y∗ = (−1, 0, 0, 2.75,−1.75). Therefore a generator OSF
for min{c1x : A1x = 1, x ∈ Z8

+} is Fα, where α = ᾱ+y∗ = (−4,−1, 0.5, 4,−0.5)
and E = {3, 6, 7}.

14

Now consider min{c2x : A2x = 1, x ∈ Z9
+}. Row 6 is a singleton and

therefore we fix x9 = 1 and reduce the problem to min{c̄x : Āx = 1, x ∈
Z7

+}. M given by (32) is M = min{4.5/2,−1/2} = −0.5, where the minimum
is taken over columns 1 and 8. A generator OSF Fα is then given by α =
(−3,−1, 0.5, 2.5,−0.5, 3.5) and E = {4, 7, 8}. Note that in this case the objective
value increases by 3 and therefore 1ᾱ + 3 = 1α.

5 Computational Experiments

The computational experiments were carried out on the set partitioning in-
stances used by Hoffman and Padberg (1993) and Eso (1999). They were per-
formed on an IBM Thinkpad 570 with a 333 MHz Pentium III processor and
196 MB of main memory. We used Visual Studio C++ version 6.0 and ILOG
CPLEX 6.5 as the linear programming solver.

The computational results for the instances from Eso (1999) are presented in
Table 1 and in Table 2 we show the results for the instances from Hoffman and
Padberg (1993). Instances with an integral solution to the LP relaxation are
omitted since Fy∗ is a generator OSF for these instances, where y∗ is an optimal
dual solution to the LP relaxation. Among the Padberg-Hoffman instances,
due to the low physical memory on the notebook, we were not able to solve
instances nw05, nw17, and us01. In addition, nw16 is omitted since it is solved
by preprocessing. Only 3 instances from Eso are solved by CPLEX and therefore
all remaining sp instances are not presented. The sp11 instance is infeasible
and our algorithm finds an unbounded LP (3). All the times are CPU times in
seconds. The column “|N \ S|” shows the cardinality of N \ S before we apply
the enlarge generator algorithm, i.e. just before step 15, and the last column
gives the CPU time for solving a problem by the branch-and-cut solver CPLEX.
The “?” sign denotes that we exceeded the time limit of 2 hours.

The problem aa04 is hard and we were not able to finish stage 1 in the given
time limit. For 5 other problems we were able only to solve stage 1 and the
expansion heuristic but the enlarge generator algorithm exceeded the time limit.
Note that only for the problems with positive number in the “|N \S|” column we
had to apply the enlarge generator algorithm. It takes a substantially amount
of time to apply the enlarge generator algorithm (e.g. kl01). The problem aa05
is interesting since we have a generator OSF over all columns but one and yet
it takes more than 2 hours to find a generator OSF over all of the columns.

An important fact from these two tables is the observation that |E| is rela-
tively low for all of the instances. Even instances with more than 10,000 columns
have the cardinality of E less than 300. This is encouraging for applying the
algorithms for large-scale IPs that are presented in Klabjan (2003).

The overall computational time, which is the sum of the preprocessing time
and the time for solving the 2 stages, is acceptable for a methodology that
reveals much more information about an IP instance than just an optimal IP
solution. It is unreasonable to expect that the computational times would be
lower than branch-and-cut computational times since the latter algorithm finds
only a primal optimal solution. Nevertheless, these computational results show
that it is doable to obtain an optimal subadditive dual function.

Table 3 shows the breakdown of the computational times of the enlarge gen-
erator algorithm. The second column shows the number of iterations of this part
of the algorithm, i.e. how many times we solve (3), and the third column shows
the average execution time for solving this LP. The enlarge generator algorithm

15

file:www.microsoft.com
file:www.ilog.com
file:www.ilog.com

size preprocessing time CPLEX
name rows cols rows cols time stage 1 stage 2 | E | |N \ S| time
sp11 104 2775 63 519 47 438 0 53 0 240
sp2 173 3686 150 3528 59 39 0 223 0 5
sp3 111 1668 73 967 26 3 0 97 0 18

Table 1: Instances from Eso (1999)

size preprocessing time CPLEX
name rows cols rows cols time stage 1 stage 2 | E | |N \ S| time
aa01 823 8904 605 7531 32 3803 ? ? 95 723
aa03 825 8627 537 6695 30 25 171 142 0 88
aa04 426 7195 342 6123 17 ? ? ? ? 908
aa05 801 8308 521 6236 21 106 ? ? 1 97
aa06 646 7292 486 5858 23 52 ? ? 5 39
kl01 55 7479 47 5915 49 12 336 100 13 14
kl02 71 36699 69 16542 8 240 ? ? 60 118
nw03 59 43749 53 38958 6 29 0 19 0 48
nw04 36 87482 35 46189 16 5757 ? ? 998 378
nw06 50 6774 37 5964 45 10 0 58 0 8
nw11 39 8820 28 6436 28 4 0 3 0 6
nw13 51 16043 48 10900 4 9 0 4 0 18
nw18 124 10757 81 7861 90 100 0 292 0 13
nw20 22 685 22 536 0 0 0 13 0 0
nw21 25 577 25 421 0 0 0 4 0 0
nw22 23 619 23 521 0 0 0 7 0 0
nw23 19 711 15 416 0 4 0 52 0 2
nw24 19 1366 19 926 2 1 0 52 0 1
nw25 20 1217 20 844 0 0 0 9 0 0
nw26 23 771 21 468 1 0 0 7 0 1
nw27 22 1355 22 817 3 0 0 4 0 0
nw28 18 1210 18 582 3 0 0 10 0 0
nw29 18 2540 18 2034 6 3 19 50 4 1
nw30 26 2653 26 1877 22 1 0 27 0 1
nw31 26 2662 26 1728 14 1 0 13 0 1
nw32 19 294 17 250 0 2 0 28 0 1
nw33 23 3068 23 2308 26 2 5 16 1 1
nw34 20 899 20 718 2 0 0 3 0 1
nw35 23 1709 23 1191 7 0 0 3 0 1
nw36 20 1783 20 1244 15 5 14 67 12 0
nw37 19 770 19 639 0 0 0 3 0 0
nw38 23 1220 20 722 9 0 0 6 0 1
nw39 25 677 25 565 1 0 0 9 0 0
nw40 19 404 19 336 0 0 0 11 0 0
nw41 17 197 17 177 0 0 0 4 0 0
nw42 23 1079 20 791 4 1 0 30 0 0
nw43 18 1072 17 982 0 0 0 3 0 0
us02 100 13635 44 5197 289 247 0 287 0 17
us04 163 28016 95 4080 53 3 0 25 0 68

Table 2: Instances from Hoffman and Padberg (1993)

16

is time consuming due to the large number of iteration and a relatively high
execution time for row generation. We believe there is room for improvement
especially in decreasing the number of iterations but it requires better strate-
gies to select elements from H that are included to E (see Klabjan (2003) for
the existing strategy used in the implementation). The last two columns break
down the time for solving a single LP (3). The next to last column shows the
average number of the separation heuristic calls per LP solving and the last
column shows the number of violated rows that are on average found in the
separation procedure.

LP (3) iterations separation
name total no. average time total per iter. average no. added rows
kl01 69 3.6 11 6.3
nw29 18 0.7 6 4.2
nw33 8 0.1 8 1.5
nw36 24 0.5 3.5 3.1

Table 3: Solving (3)

The effects of the expansion heuristics are shown in Table 4. The second
column shows the cardinality of N \ S after step 13 and the last column shows
the same cardinality after step 14. The remaining column shows the cardinality
after applying the LP based expansion heuristic. We see that the expansion
heuristic significantly reduces |N \ S| and it is effective for all of the problems.
The enhanced expansion heuristic reduces this size even further but the impact
of this heuristic is not so impressive.

|N \ S| after |N \ S| after |N \ S| after
name stage 1 LP expansion enhanced expansion
kl01 166 18 13
nw29 40 6 4
nw33 3 1 1
nw36 193 13 12
aa01 1875 109 95
aa03 2845 2 0
aa05 254 5 1
aa06 2201 8 5
nw04 7730 998 998

Table 4: Expansion heuristics

5.1 Obtaining all Optimal Solutions

Given a generator OSF Fα, by complementary slackness, all optimal solutions
to the IP are found only among the columns i with αai ≥ ci. These columns
have zero reduced cost, which we define for a column i as ci − Fα(ai). Given
all such columns, we find all optimal solutions to (1) by a naive methodology
of enumerating all of them, i.e. solving several IPs. For selected instances we
present the computational results in Table 5. x∗ denotes the optimal primal
solution obtained by Algorithm 1. From the second column we observe that we

17

do not have many columns with zero reduced cost and therefore enumerating all
optimal solutions on 0 reduced cost columns is acceptable, which is confirmed
by the execution times given in the last column. The fourth column shows
the number of columns that are at 1 in all optimal solutions. We observe
that larger instances have alternative optimal solutions, which is important for
robustness. A decision maker can select the best optimal solution based on
alternative objective criteria.

no. 0 reduced no. cols at no. cols at no. optimal time in
name cost cols 1 in x∗ 1 in all solutions seconds
nw36 8 4 4 1 0
nw33 13 5 5 1 0
nw29 12 4 4 1 0
nw04 17 9 9 1 0
kl01 42 13 32 6 2
aa06 312 93 95 2 17
aa05 449 101 103 2 30
aa03 403 102 102 1 28
aa01 255 101 101 1 15

Table 5: All optimal solutions

5.2 Sensitivity Analysis

Given a generator OSF, we can perform sensitivity analysis. We have performed
two computational experiments.

In the first one we generated random columns with negative reduced cost.
The generated columns reflect the structure of the instances, e.g. the cost is of
the same order and the number of nonzeros per column is also of the same order
as those of the existing columns in the constraint matrix. On average, among
200,000 randomly generated columns only 10% had negative reduced cost and
therefore we know beforehand that the addition of the remaining columns does
not decrease the IP objective value. We added, one at the time, each generated
column with negative reduced cost to the IP and solve it to find the new optimal
value, which is clearly at most zIP. The computational results are presented in
Table 6. The objective improvement shows the average ratio (zIP−z)/zIP, where
z is the IP objective value to (1) after adding a column with the negative reduced
cost. The number of improvements represents the percentage of the negative
reduced cost columns that actually improve the objective value. Note that
because of degeneracy after adding such a column the objective value might not
decrease. The last two columns show the improvements if the absolute value of
the reduced cost is between 25% and 50% of zIP and the remaining two columns
if it is between 0% and 25%. With the exception of nw18, the problems are
degenerate since only approximately 2% of the columns with negative reduced
cost actually decrease the objective value. On the other hand, the objective
improvements are substantial. With the exception of nw06, the objective value
improvements are larger when the reduced cost is smaller.

In the second experiment we considered changing right hand sides. If Fα is
a generator OSF to (1), then for any row i the value Fα(1 − ei) gives a lower
bound on z̄i = min{cx : Ax = 1 − ei, x integer}. This holds since Fα is a
subadditive dual feasible function to this IP. We compare this bound with the

18

[0, 25%] [25%, 50%]
improvement improvement

name obj. value count obj. value count
nw18 4.70% 5.5% 15.0% 99%
nw06 5.10% 1.0% 3.50% 2.0%
nw24 11.5% 2.5% 13.1% 3.5%
us02 3.30% 1.5% 7.80% 1.5%
kl01 12.5% 3.0% 24.0% 0.5%

Table 6: Addition of negative reduced cost columns

lower bound given by the optimal dual vector to the LP relaxation of (1). Table 7
shows the average over all rows i of values (z̄i− zLP)/z̄i, where zLP denotes the
corresponding lower bound. Except for the nw24 instance, the bound obtained
by the generator OSF is substantially better. Note that Fα(1 − ei) does not
necessarily produce a better lower bound, which is reflected in instance nw24.

name Fα LP relaxation
nw18 2.7% 17.2%
nw13 0.7% 4.20%
nw24 5.8% 4.80%
us04 2.5% 4.80%

Table 7: Changing right hand sides

References

Balas, E. and Carrera, M. (1996). A dynamic subgradient-based branch-and-
bound procedure for set covering. Operations Research, 44, 875–890.

Borndorfer, R. (1998). Aspects of Set Packing, Partitioning, and Covering.
Ph.D. thesis, Technical University of Berlin.

Burdet, C. and Johnson, E. (1977). A subadditive approach to solve integer
programs. Annals of Discrete Mathematics, 1, 117–144.

Eso, M. (1999). Parallel Branch and Cut for Set Partitioning. Ph.D. thesis,
Cornell University.

Gomory, R. (1969). Some polyhedra related to combinatorial problems. Linear
Algebra and Applications, 2, 451–558.

Hoffman, K. and Padberg, M. (1993). Solving airline crew scheduling problems
by branch-and-cut. Management Science, 39, 657–682.

Johnson, E. (1973). Cyclic groups, cutting planes and shortest path. In T. Hu
and S. Robinson, editors, Mathematical Programming, pages 185–211. Aca-
demic Press.

Klabjan, D. (2003). A new subadditive approach to integer programming. Tech-
nical report, University of Illinois at Urbana-Champaign. Available from
http://netfiles.uiuc.edu/klabjan/white papers.htm.

19

http://netfiles.uiuc.edu/klabjan/www/white_papers.htm

Llewellyn, D. and Ryan, J. (1993). A primal dual integer programming algo-
rithm. Discrete Applied Mathematics, 45, 261–275.

Savelsbergh, M. (1994). Preprocessing and probing for mixed integer program-
ming problems. ORSA Journal on Computing, 6, 445–454.

Wolsey, L. (1981). Integer programming duality: Price functions and sensitivity
analysis. Mathematical Programming, 20, 173–195.

Wolsey, L. (1998). Integer Programming. John Wiley & Sons.

20

	Introduction
	Preprocessing
	Preprocessing Rules

	Algorithmic Enhancements to the Second Stage
	Extension Heuristic
	Solving (3)

	Reconstructing the Generator OSF
	Computational Experiments
	Obtaining all Optimal Solutions
	Sensitivity Analysis

