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Abstract

Times series foundation models (TSFMs) have emerged as a promising paradigm1

for time series analysis, showing remarkable generalization performance across2

different domains. While there has been research on hallucinations in foundation3

models, hallucinations in TSFMs are underexplored. In this paper, we formally4

define TSFM hallucinations in the zero-shot forecasting setting by examining5

whether a generated forecast exhibits different dynamics from those of the context.6

Our study reveals that TSFM hallucinations are mainly caused by the loss of context7

information in hidden states during forward propagation. As such, we propose8

methodologies to identify signal subspaces in TSFMs and magnify the signal9

subspace information through intervention. Extensive experiments demonstrate10

that our proposed intervention approach effectively mitigates hallucinations and11

improves forecast performance. Furthermore, the signal strength measure we12

compute from signal subspaces has strong predictive power of hallucinations and13

forecast performance of the model. Our work contributes to deeper understanding14

of TSFM trustworthiness that could foster future research in this direction.15

1 Introduction16

Times series analysis is a major research field that facilitates decision making and scientific inference17

across a broad range of domains, from energy and weather to economy, transport, and system18

management. As a key task, time series forecasting has motivated the development of distinct19

approaches including statistical models [6, 32] and deep learning models [28, 40]. Despite competitive20

performance on specific tasks, these models are typically trained on a single domain, without sufficient21

capability to generalize to different domains. Inspired by the success of foundation models in fields22

like natural language processing (NLP) [1, 7], time series foundation models (TSFMs) has recently23

emerged as a new paradigm towards universal forecasters [4, 8, 11, 16, 24, 30, 39]. By pretraining24

on large-scale TS data, TSFMs have shown remarkable few-shot and even zero-shot forecasting25

performance across multiple domains [3, 18], substantially reducing the need for downstream data.26

The hidden representations of TSFMs are also valuable for downstream tasks by capturing the context27

TS information.28

Yet, the reliability of TSFMs is often hampered by hallucinations, as with other foundation models.29

Broadly referring to the generation of unsupported statements or nonsensical content, hallucinations30

primarily stem from a lack of correct knowledge or insufficient inference capability of the model [19].31

Among numerous hallucination detection and mitigation approaches proposed, intervention is a32

powerful mitigation approach requiring no additional training that has demonstrated effectiveness for33

large language models (LLMs) [25, 31, 43] and vision-language models (LVLMs) [23, 42].34

In zero-shot forecasting, since a TSFM is tasked with generating extrapolations based on the extracted35

information of the context TS such as trends, periodicity, and patterns [18], accurately processing36



the context information is essential for generating high-quality forecasts. As such, we study TSFM37

hallucinations from the perspective of whether a forecast exhibits drastically different dynamics from38

those of the context, e.g., Figure 1 (a) versus (b). We investigate the underlying mechanisms of TSFM39

hallucinations through the lens of hidden representations and develop a novel intervention approach40

to address the identified causes. As far as we know, little has been explored on similar research41

problems in existing literature. We strive to address these knowledge gaps and contribute to deeper42

understanding of TSFM trustworthiness that could foster future research in this direction.43

We formally define TSFMs hallucination in the zero-shot forecasting setting in §3 and outline the44

rules for checking hallucinations in practice. In §4.1, we build insights on TSFM hallucinations45

through experimental analyses, where we find that hallucinations are mainly caused by a lack of46

context information in hidden states during forward propagation. We then propose a methodology to47

identify the signal spaces and a measure, SSAS, to quantify the signal strength of hidden states in48

§4.2. Build upon these results, we propose a novel intervention approach, SSIM, which mitigates49

hallucinations by magnifying the signal information of hidden states in §4.3. Extensive experiments50

in §5.2 demonstrate that the forecasting performance of TSFMs suffers from hallucinations and51

our intervention approach effectively mitigates hallucinations and improves the quality of forecasts,52

yielding up to 6.62% reduction on hallucination rate, 93.83% gain on R2, and 13.52% gain on53

correlation. Moreover, the signal strength measure we propose has strong predictive power of both54

hallucinations and the forecast performance of TSFMs.55

Our main contributions in this work are: (1) We formally define the problem of hallucinations in56

TSFMs along with a set of procedures to check hallucinations. We are the first to systematically study57

this problem to our best knowledge. (2) We propose a methodology to identify the signal subspaces in58

TSFMs and a measure to quantify the signal strength in TSFM hidden states. (3) We propose a simple59

and efficient intervention approach to mitigate hallucinations by magnifying the signal information in60

hidden states. (4) We conduct extensive experiments on both synthetic and real-world datasets to61

demonstrate the effectiveness of our proposed signal information measure and intervention approach.62

2 Related Work63

Times series foundation models. TSFMs represent a promising paradigm towards generalization64

across different TS domains and tasks by leveraging the knowledge from large-scale pretrained65

data [4, 8, 11, 16, 24, 30, 39]. TSFMs not only substantially reduce the need for downstream data66

but have also shown capabilities of producing accurate forecasts even in zero-shot scenarios, where67

forecasts are made on inputs from previously unseen domains [3, 18]. While most TSFMs are68

Transformer based [33] and open sourced, they are diverse in architectural design, tokenization69

strategies, and pretraining objectives. For instance, Chronos [4] and Chronos-Bolt adopt encoder-70

decoder architecture, while TimesFM [11] is decoder-only. Chronos-Bolt and TimesFM truncate the71

normalized TS inputs into patches, while Chronos discretely quantizes the scaled inputs into a fixed72

vocabulary. Yet, the forecasting performance of TSFMs suffers from hallucinations when they fail to73

capture enough signal information from the inputs. We study this issue on models from both families.74

Hallucinations. Hallucination, defined as the generation of unfaithful or nonsensical content, is75

a fundamental challenge in Large Foundation Models due to their black-box nature [19]. Recent76

research has examined models’ hidden representations for hallucination detection and mitigation,77

based on the hypothesis that factual knowledge is encoded in these states [10, 12, 15]. Studies have78

identified diagnostic signals in hidden states, showing that outlier or inconsistent activation patterns79

during generation can indicate potential hallucinations [2, 9, 13, 31, 36]. Complementary approaches80

focus on hidden state manipulation, demonstrating that truthfulness can be elicited through targeted81

neuron activation interventions, offering promising directions for reducing hallucinations [22, 23,82

31, 41, 42]. We are the first to formally define and systematically study hallucinations in time series83

foundation models. We develop methodologies to both detect and mitigate TSFM hallucinations.84

Intervention. Hidden state intervention has emerged as a powerful technique for controlling neural85

models’ behavior, as these internal representations serve as causal factors influencing model outputs.86

Research by [43], [25], and [21] demonstrates effective control over LLM outputs through activation87

steering, which identifies linear-interpretable directions in representation space and guides hidden88

states along these pathways. Some research achieves model output modification by selectively89
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masking specific neuron activations, preventing corresponding generations from occurring [29, 35].90

The intervention approach for TSFMs proposed in [38] alters the outputs but does not address specific91

challenges of TS forecasting. Differently, we propose a novel intervention approach to specifically92

address TSFM hallucinations that is context adaptive and selectively intervenes model layers.93

3 Definitions and Preliminaries94

Formally, we describe the forecast of a time series foundation model and the problem of hallucinations.95

Definition 1 (TSFM forecasts). A pretrained time series foundation model, denoted as Mθ, takes96

a time series xcontext = [x1, . . . , xp] of context length p as the input and generates a forecast97

x̂ = Mθ(xcontext) = [x̂p+1, . . . , x̂p+q] of horizon q. For an L-layer time series foundation model,98

we denote the hidden states at different positions of layer l (the outputs of the layer) as a matrix99

H(l) = [h
(l)
1 , . . . ,h

(l)
n ] ∈ R

n×d, where d is the dimension of hidden states.100

Definition 2 (TS forecast hallucinations). Suppose for a time series xfull = [x1, . . . , xT ], a101

knowledge set K can be inferred from a partial time series xcontext = [xi, . . . , xj ], 1 ≤ i < j < T .102

The knowledge set K comprises time-dependent knowledge rules r that hold true for xfull, i.e.,103

r(xi, i) = 1 for xi ∈ xfull, or simply r(xfull) = 1. In zero-shot time series forecasting, we consider104

a hallucination to be a forecast that does not conform to the knowledge rules inferred from the context105

time series and define the set of hallucinations as Hallu(xcontext) = {x̂ :
∧

r∈K
r(x̂) = 0}.106

Definition 3 (Hallucination detection and mitigation). The goal of hallucination detection is to107

define a score function f that discriminates hallucinated forecasts of the foundation model, such108

that for any x̂ = Mθ(xcontext) ∈ Hallu(xcontext), we have f(xcontext, x̂, θ) > τ . We mitigate109

hallucinations through test-time intervention on hidden states so that with the intervention operation110

I, we obtain non-hallucinated forecasts Mθ,I(xcontext) /∈ Hallu(xcontext).111

In practice, we sequentially extract a set of knowledge rules K = {r1, . . . , rn} from the context time112

series to check whether a forecast is hallucinated. Further details are provided in the appendix.113

Trend. The trend rule checks whether the trend of the forecast conforms to those of the context.114

We perform ordinary least-square (OLS) regression on x̂ and take the first-degree coefficient c′ as115

the trend if it is significant with the p-value < 0.01. We then perform OLS on rolling windows116

of xcontext and take significant trends [c1, . . . , cn]. With the relative difference between trends117

computed as diff(c, c′) =
∣

∣

∣

c′

c
− 1

∣

∣

∣
, the trend rule is satisfied if the minimum relative difference118

mini diff(ci, c
′) < ϵ, or neither the forecast nor the context has significant trends.119

Frequency. The frequency rule checks whether the spectral density of the forecast conforms to those120

of the context. After removing the trend, we compute the spectral densities [f1, . . . ,fn] of rolling121

windows on xcontext using short-time Fourier transform (STFT) [17] and also the spectral density f ′
122

of x̂. With the Jaccard distance between spectral densities computed as D(f ,f ′) = 1−
∑

i
min{fi,f

′

i}∑
i
max{fi,f ′

i
} ,123

the frequency rule is satisfied if the minimum distance minj D(fj ,f
′) < ϵ.124

Pattern. The pattern rule checks whether the pattern of the forecast is similar to those of the context.125

After removing the trend, we compute the relative absolute errors between the forecast and rolling126

windows [w1, . . . ,wn] on xcontext. With the relative absolute error computed as RAE(x, x̂) =127 ∑
i
|xi−x̂i|∑
i
|xi−x̄|

, the pattern rule is satisfied if the minimum relative error minj RAE(wj , x̂) < ϵ.128

ARMA. The ARMA rule checks whether the ARMA dynamics of the forecast conform to those of129

the context, which complements the pattern rule since a TS that exhibits strong ARMA dynamics130

may not have distinct patterns. After removing the trend, we fit a first-order Autoregressive moving131

average (ARMA) model [6] on xcontext and take the AR and MA coefficients ϕ and ψ if both are132

significant with p-values less than 0.01. Let ϕ′ and ψ′ be the first-order ARMA coefficients on x̂, the133

ARMA rule is satisfied if the relative differences

∣

∣

∣

ϕ′

ϕ
− 1

∣

∣

∣
< ϵ and

∣

∣

∣

ψ′

ψ
− 1

∣

∣

∣
< ϵ.134

A TSFM forecast that violates the trend, frequency, or both pattern and ARMA rules is considered to135

be hallucinated, since it is unsupported by the information encoded in the context.136
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Figure 1: (a) (c) Examples of hallucinated and non-hallucinated forecasts from Chronos. (b) (d) The
UMAP visualizations of hidden states at the last model layer and the statistics of hidden states.
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Figure 2: (a) (b) The standard deviations of hidden state activations across positions under varying
noise magnitudes. (c) (d) The mean pairwise cosine similarities of hidden states across positions. The
x-axis represents the standard deviation of the Gaussian noise added to the context signal.

4 Methodology137

To understand the cause of hallucinations in TSFMs, we first build insights from observations, provide138

intuitive explanations, and then perform experimental analyses to justify our claims. Afterwards,139

we propose a signal information measure to help detect hallucinations. Finally, we develop a novel140

test-time intervention approach that mitigates hallucinations by addressing the identified causes.141

4.1 Observations and Analyses142

We begin with a brief case analysis. Figure 1 (a)(c) presents a hallucination example where the model143

fails to generate a forecast consistent with the context TS. The UMAP [26] visualization of hidden144

states at the last layer reveals irregular patterns, with high mean pairwise cosine similarity and low145

activation variance. We speculate that the forecast failure is caused by the loss of context information146

in hidden states during forward propagation. In comparison, we find that injecting a small amount147

of random perturbation to the context TS with Gaussian noise helps address such information loss,148

as shown in Figure 1 (b)(d). We observe that the hidden states are more evenly distributed in each149

cluster, with the mean pairwise similarity substantially reduced and activation variance increased.150

To understand the effects of context signal and noise on the internal model, we present the results151

over 10 random perturbations of the context TS with Gaussian noise of varying magnitudes where152

no hallucination occurs. From Figure 2 (a)(b), we observe that hidden state activations exhibit the153

greatest variance across positions in the presence of clean signal. As the signal gets mixed with more154

noise, while the input variance increases, hidden state activations becomes less variant. The decline155

in activation variance with noise magnitude is more salient at higher layers, suggesting that the model156

incrementally extracts signals and reduces noises from the input by each layer.157

Based on this, we posit that the hidden state space H
(l) at each TSFM layer can be decomposed158

into signal and noise subspaces H
(l) = S

(l) ⊕ N
(l) ⊂ R

d, handling the signals and noises of the159

input [14, 20, 27]. In forward model propagation H(1) → . . . → H(L), the signal components160

of a hidden state ΠS(l)h
(l) are further processed by subsequent layers, while the noise components161
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ΠN(l)h(l) get repressed and eventually removed. Since the signal components are more variant and162

dissimilar across hidden state positions than the noise components, the hidden states would exhibit163

greater distinctiveness across positions when the signal strength at a layer is strong (Figure 2 (c)(d)).164

Back to the previous case of TSFM hallucinations, the inactivity of signal subspaces of the model leads165

to highly similar hidden states across positions. In this case, a proper amount of random perturbation166

injects input variance that helps activate the signal subspaces and facilitates the propagation of context167

signal information. Nonetheless, it is hard to determine the optimal amount of perturbation, since168

too much perturbation obscures the input signal and degrades forecast quality. Moreover, a single169

perturbation is not robust [23], while performing multiple perturbations hampers efficiency. As such,170

our goal is to magnify the signal information in hidden states through intervention, which would171

enable us to mitigate hallucinations in a controllable and efficient manner.172

4.2 Signal Subspace Identification173

Now, we develop a novel methodology to identify the signal subspaces in TSFM layers and provide174

empirical analysis. We aim to identify a set of hidden state neurons that are most active to context175

signals by examining the variance of activations across hidden state positions, enlightened by the176

associations between the activation variance and signal strength we observe in the previous subsection.177

The activity score of the j-th neuron at layer l given a context input x is computed as:178

A(l)(j | x) =

√

1

n

∑

i

(H
(l)
i,j − h̄

(l)
j )2 . (1)

The neuron activity measure we propose is more nuanced compared with the magnitude of neuron179

activations used in prior works [34, 35], which not only reflects the overall magnitude but also180

measures the deviation of neuron activations across TS steps.181

To measure neuron activity in the presence of signals, we collect the activity scores on a synthetic182

dataset comprising common waveforms that will be described in §5.1. We also vary the magnitude of183

noises injected to the context signals and initialize them with different random seeds for robustness.184

With Dsignal denoting the set of synthetic TS inputs where no hallucination occurs, we consider185

neurons with the activity score consistently top ranked across the samples as candidate signal neurons,186

i.e., Cand(l) =
⋂

x∈Dsignal
{j | rank(A(l)(j | x)) < ϵd}. We compute the signal activity score of187

each neuron using the sample mean A
(l)
signal(j) =

1
|Dsignal|

∑

x∈Dsignal
A(l)(j | x).188

As hidden state neurons may fulfill multiple roles [5, 37, 42], e.g., processing signals and removing189

noises concurrently, we want to identify neurons that are primarily responsible for signal processing.190

To this end, we further collect the activity scores A
(l)
noise with Gaussian noises as the input by similar191

means and then compute the contrastive neuron activity score between signal and noise:192

A
(l)
contrastive(j) = A

(l)
signal(j)−A

(l)
noise(j) . (2)

For each model layer l ∈ {1, . . . , L}, we select the candidate neurons with top-ranked contrastive193

activity scores as the signal neurons, i.e., Sig(l) = Cand(l) ∩ {j | rank(A
(l)
contrastive(j)) < ϵd}.194

Figure 3 plots the distributions of the contrastive neuron activity scores across different model layers.195

We observe that at each layer only a small proportion of neurons are exclusively sensitive to signal or196

noise. Moreover, there is greater contrast at higher layers where neurons get more specialized.197
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Figure 3: Distributions of contrastive activity scores.

Ranking signal neurons by contrastive ac-198

tivity score, we leverage the top signal199

neuron’s activity score at the final layer200

as a measure of the strength of signal in-201

formation the model has processed, i.e.,202

A(L)(j | x) with j = Top1(Sig(L)).203

The final layer is selected as it shows the204

greatest contrast of neuron activity between205

signal and noise. We call the proposed206

measure Signal Subspace Activity Score207

(SSAS) and will verify its usefulness for208
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TSFM hallucination detection and performance prediction in §5.2. With this, we claim that the model209

implicitly expresses in the hidden state subspaces how much signal information it is able to capture210

from the context.211

4.3 Signal Subspace Intervention212

Built upon the previous results, we propose a Center-Project-Scale (CPS) intervention operation213

to mitigate hallucinations by magnifying the signal information in hidden states. During forward214

propagation, for the hidden states H(l) ∈ R
n×d at a TSFM layer, CPS works as follows:215

1. Centering H(l) by subtracting the mean across positions to obtain H
(l)
c = H(l) − h̄(l);216

2. Computing the projections on signal subspaces ΠS(l)H
(l)
c at all positions;217

3. Scaling the signal components by a factor λ so that H̃
(l)
c = H

(l)
c + (λ− 1)ΠS(l)H

(l)
c ;218

4. Adding back the mean to obtain the intervened hidden states H̃(l) = H̃
(l)
c + h̄(l).219

The intervened hidden states are passed as the inputs to the next layer. We center the hidden states220

in Step 1 to emphasize the activation differences across positions. Arranging the bases of S into a221

orthogonal matrix P = [e1, . . . , ek] ∈ R
k×d, where ei is the indicator vector of a signal neuron,222

the projection in Step 2 can be computed by matrix product. The CPS operation can be formulated223

simply as H̃(l) = H(l) + (λ − 1)H
(l)
c P TP , which can be efficiently computed at each layer in224

O(ndk) cost, with k ≪ d. The cost can be further reduced to O(nk) leveraging the sparsity of P .225

The CPS operation has desirable properties. First, the mean of hidden state neuron activations is226

unaltered by the operation, while the standard deviation scales proportionally with λ, which makes the227

operation easy to control and causes no distribution drift to neuron activations. Moreover, different228

from previous intervention approaches of adding a static steering vector to hidden representations [21,229

23, 38], our approach adaptively alters neuron activations based on their distributions, improving the230

contrast of hidden states and clustering effects. We mathematically show that in many cases the CPS231

operation can reduce the cosine similarity between two hidden states (see proofs in the appendix).232

We further propose an adaptive scaling approach to help identify the scenarios when it is necessary233

to apply intervention and determine the scaling magnitude. Since the signal activity scores A
(l)
signal234

measure the neuron activity in the presence of strong signals, we use them as a reference. At each235

layer, we compute the mean activity scores of the signal neurons Ā(l)(x) = 1
k

∑

j∈Sig(l) A
(l)(j | x).236

Then we compute the scaling factor as a ratio λ(l) = Ā
(l)
signal/Ā

(l)(x) and apply the intervention237

when λ(l) > 1. In this way, we adaptively select the intervened layers with weak signal information238

and scale the activations of signal neurons to match those of the reference. We call the complete239

intervention approach Signal Subspace Intervention through Magnification (SSIM).240

5 Experiments241

In this section, we conduct experiments to address the following questions: (1) How do hallucinations242

affect the performance of each type of TSFM? (2) How is the effect of our proposed intervention243

approach on hallucination mitigation? (3) How is the performance of our proposed signal strength244

measures? (4) How do our designed components affect the intervention performance?245

5.1 Experimental Settings246

Datasets. We curate a synthetic dataset comprising common waveforms of sine, square, sawtooth,247

triangle, and pulse waves with varying slopes in {−0.01, 0, 0.01}. We vary the number of periods in248

the context in {8, 10, 12, 14, 16, 18, 20} and the standard deviation of Gaussian noise added to the249

context signal in {0, 0.1, 0.2, 0.3, 0.4}. In addition, we adopt read-world datasets from GIFT-Eval [3]250

benchmark covering various domains. We take a fixed number of final observations from each time251

series, dividing them into context and ground truth of fixed lengths. We discard TS instances with252

over 10% missing values and impute missing values with the segment mean. As defined in §3, we253

retain TS instances whose ground truth satisfies the knowledge rules extracted from the context such254
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that the context contains sufficient information for forecasting. Each dataset is randomly split into255

validation (20%) and test (80%) sets. Further details are available in the appendix.256

Baselines. For hallucination mitigation, we compare SSIM with input denoising by smoothing as257

well as input perturbation and output averaging [23]. For hallucination detection, we compare SSAS258

with the statistics discussed in §4.1, including the mean pairwise cosine similarity of hidden states259

and the mean standard deviation of neuron activations.260

Evaluation metrics. We evaluate forecast quality with R2 and Pearson correlation which are scale261

invariant. R2 measures the goodness of fit to the ground truth; Pearson correlation measures the262

strength and direction of the linear relationship with the ground truth (invalid values are filled with 0).263

Whether a forecast is hallucinated is determined according to the knowledge rules defined in §3. We264

evaluate the effect of hallucination mitigation with hallucination rate reduction and forecast quality265

improvement. We evaluate the accuracy of hallucination detection with AUROC and performance266

prediction with Spearman rank correlation.267

Implementation details. We evaluate on three mainstream TSFMs: Chronos [4], Chronos-Bolt,268

and TimesFM [11]. We set the context length to 500 and the forecast horizon to 64 for zero-shot TS269

forecasting in our main experiments, using the base versions of Chronos and Chronos-Bolt together270

with TimesFM-2.0. As Chronos produces probabilistic forecasts, we set the number of decoding271

samples to 1 and fix the random seed to ensure reproducibility. We set the frequency configuration of272

TimesFM to 0. For hallucination check, we set the thresholds of the trend, frequency, pattern, and273

ARMA rules to 0.25, 0.5, 0.5, and 0.25 respectively based on validation. For SSIM, we perform274

grid search for the proportion of selected top neurons ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and set it to 0.1 for275

Chronos and TimesFM and 0.2 for Chronos-Bolt based on validation. For baselines methods, we276

denoise input TS using the mean of sliding windows of size 5. We perturb input TS by Gaussian277

noise with a standard deviation of 0.05 times that of the input and repeat for 10 runs. We use the278

signal strength measures for performance prediction and their negations for hallucination detection.279

5.2 Main Experimental Results280

TSFM hallucinations (RQ1). Table 1 summarizes the performance of original TSFMs. We note281

that the hallucination rate varies drastically across domains. On Energy domain the TS have more282

periodic patterns, while on Nature domain the TS contain more abrupt changes, making it harder283

to process the context information. The forecasts appear to have stronger correlations with the284

ground truths on domains where the hallucination rate is lower. Table 2 compares the performance of285

hallucinated forecasts versus non-hallucinated forecasts by TSFMs. We see that hallucinated forecasts286

are consistently outperformed by non-hallucinated forecasts. For Chronos-Bolt and TimesFM, the287

mean R2 is positive on each domain when no hallucination occurs. Hallucinated forecasts have much288

weaker correlations with the ground truths than non-hallucinated forecasts for all models, indicating289

that the captured context signal information is not as strong. The χ2 test yields p < 105 against290

the null hypothesis that the performance of hallucinated and non-hallucinated forecasts is the same.291

These results show that hallucinations significantly impact the forecasting performance of TSFMs.292
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Figure 4: Distributions of hallucinations.

Figure 4 (a) compares the distributions of293

hallucinations in TSFMs, with Type 1 re-294

ferring to the violation of the trend rule,295

Type 2 to the frequency rule, and Type 3296

to both the pattern and ARMA rules. We297

observe that Type 3 hallucinations occur298

most frequently, since these rules require299

detailed inference on the context. Chronos300

suffers fewer Type 1 and 2 hallucinations301

than the other models as it does not apply302

patching, enabling more accurate capture303

of the trend and frequency information.304

Hallucination mitigation (RQ2). Table 1 compares the forecasting performance with SSIM and305

the baseline methods. SSIM attains the best performance overall, yields up to 6.62% reduction on306
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Table 1: Comparison of forecasting performance across domains, with the best results boldfaced.

Model Domain
Original Denoising Perturbation+Averaging SSIM (ours)

Hal ↓ R
2 ↑ Corr ↑ Hal ↓ R

2 ↑ Corr ↑ Hal ↓ R
2 ↑ Corr ↑ Hal ↓ R

2 ↑ Corr ↑

C
h
r
o
n
o
s

Synthetic 0.4524 -0.1625 0.6265 0.4429 -0.6734 0.5714 0.4333 -0.1053 0.6392 0.4145 0.1854 0.7150
Econ/Fin 0.4115 -3.3554 0.4751 0.5007 -4.5011 0.3413 0.4609 -3.5727 0.4735 0.4061 -3.2037 0.5146
Energy 0.1389 -0.4839 0.7180 0.2504 -3.0764 0.5315 0.1212 -0.2073 0.7241 0.1191 0.0268 0.7707
Nature 0.8035 -10.7283 0.0457 0.9514 -8.3558 0.0575 0.8436 -7.2973 0.0552 0.6715 -0.7575 0.1082
Transport 0.4197 -1.6444 0.5127 0.7565 -1.4804 0.3295 0.4461 -1.4582 0.5315 0.3938 -0.2221 0.6081
WebOps 0.5801 -414.8937 0.2762 0.8833 -139.8035 0.1559 0.6115 -79.3298 0.2822 0.6052 -21.8389 0.3369

Aggregated Mean 0.4531 -82.3762 0.4458 0.5991 -28.6399 0.3336 0.4759 -17.2700 0.4529 0.4231 -5.0845 0.5061

C
h
r
o
n
o
s
-
B
o
l
t

Synthetic 0.5381 0.0152 0.5589 0.5810 -0.0625 0.5302 0.5500 0.0099 0.5586 0.5231 0.0238 0.5672
Econ/Fin 0.4856 -1.3759 0.5727 0.4870 -1.2344 0.4243 0.4911 -1.4191 0.5929 0.4787 -1.2891 0.5811
Energy 0.0985 0.1499 0.7694 0.1712 -0.0411 0.6291 0.1002 0.1033 0.7671 0.0843 0.1508 0.7765
Nature 0.9426 -0.0744 0.1400 0.9536 -0.6290 0.1057 0.9404 -0.0876 0.1462 0.9316 -0.0657 0.1472
Transport 0.6684 0.2039 0.6501 0.8446 -0.2129 0.4072 0.6632 0.2015 0.6488 0.6522 0.2124 0.6563
WebOps 0.6777 -0.6529 0.3591 0.9024 -1.2424 0.1777 0.6707 -0.4822 0.3625 0.6632 -0.6680 0.3646

Aggregated Mean 0.5308 -0.4260 0.5099 0.6084 -0.6662 0.3848 0.5321 -0.4163 0.5158 0.5191 -0.3766 0.5171

T
i
m
e
s
F
M

Synthetic 0.1143 0.5661 0.9143 0.1452 0.4685 0.7568 0.1190 0.5688 0.9094 0.1049 0.5699 0.9194
Econ/Fin 0.3868 -1.8715 0.7793 0.4472 -5.1532 0.3722 0.4005 -1.8277 0.7657 0.3771 -0.3161 0.7847
Energy 0.1357 0.2745 0.8065 0.1987 -0.0981 0.6150 0.1341 0.2916 0.7941 0.1222 0.1304 0.8133
Nature 0.9558 -0.1678 0.1620 0.9691 -0.2561 0.1302 0.9492 -0.1715 0.1451 0.9536 -0.0902 0.1559
Transport 0.5751 0.4245 0.7027 0.6321 -0.4210 0.3540 0.5648 0.4236 0.7028 0.5733 0.4201 0.7076
WebOps 0.6429 -22.0090 0.4224 0.8676 -20.0077 0.2324 0.6202 -7.5448 0.4216 0.6359 -6.7480 0.4291

Aggregated Mean 0.4441 -4.5461 0.6368 0.5251 -5.3271 0.4119 0.4418 -2.0435 0.6275 0.4348 -1.2529 0.6410

Table 2: Performance comparison of hallucinated and non-hallucinated forecasts by TSFMs.

Metric Domain
Chronos Chronos-Bolt TimesFM

Hal Non-hal Diff Hal Non-hal Diff Hal Non-hal Diff

R
2

Synthetic -1.1206 0.6290 1.7496 -0.4450 0.5512 0.9962 -1.5404 0.8379 2.3783
Econ/Fin -6.7964 -0.9492 5.8473 -3.3098 0.4497 3.7595 -5.7181 0.5553 6.2734
Energy -2.8794 -0.0974 2.7820 -1.1625 0.2934 1.4559 -0.8971 0.4585 1.3556
Nature -12.8573 -2.0209 10.8364 -0.0846 0.0933 0.1779 -0.1923 0.3626 0.5549
Transport -3.9208 0.0018 3.9226 -0.0548 0.7253 0.7800 0.2046 0.7223 0.5178
WebOps -634.8971 -110.9056 523.9916 -1.1848 0.4657 1.6505 -34.4655 0.4127 34.8783

Aggregated Mean -161.6823 -16.6599 145.0224 -1.1647 0.4096 1.5743 -10.9572 0.5757 11.5329

Corr

Synthetic 0.3478 0.8568 0.5090 0.3596 0.7910 0.4314 0.7436 0.9364 0.1927
Econ/Fin 0.0853 0.7476 0.6624 0.2558 0.8719 0.6162 0.5927 0.8969 0.3042
Energy 0.4738 0.7574 0.2836 0.5716 0.7910 0.2194 0.6300 0.8342 0.2043
Nature 0.0226 0.1401 0.1176 0.0991 0.8118 0.7127 0.1312 0.8289 0.6977
Transport 0.2776 0.6827 0.4051 0.5407 0.8708 0.3301 0.5744 0.8765 0.3021
WebOps 0.1036 0.5148 0.4113 0.1760 0.7441 0.5681 0.2135 0.7984 0.5849

Aggregated Mean 0.1459 0.6943 0.5484 0.2441 0.8105 0.5664 0.3429 0.8716 0.5286

hallucination rate, 93.83% gain on R2, and 13.52% gain on correlation over the original models.307

While denoising improves R2 in some cases by reducing the impact of outliers, it leads to higher308

hallucination rate and lower correlation in general due to the loss of context information. Pertur-309

bation averaging improves the forecast quality to some extent, but it does not sufficiently address310

hallucinations and demands considerably more computation. In comparison, SSIM pre-computes311

the signal neurons only once for each TSFM and incurs minor additional overheads during test312

time. The performance margin between SSIM and baselines is statistically significant with p < 0.01313

by Friedman-Nemenyi test. We also analyze the distributions of hallucinations after SSIM. From314

Figure 4 (b), we observe that SSIM has the greatest impact on Type 3 hallucinations. By improving315

the propagation of signal information, the TSFM better captures patterns in the context.316

Hallucination detection and performance prediction (RQ3). We summarizes the performance of317

different measures on hallucination detection and forecast performance prediction in Table 3. SSAS318

has consistently strong predictive power across domains for different TSFMs, with high AUROC319

for hallucination detection and significantly positive rank correlations with the forecast performance,320

demonstrating the effectiveness of of our proposed signal strength measure and the critical role of321

signal neurons in generating reliable forecasts. Simply using the mean neuron activation variance as a322

measure yields inferior and less consistent results overall, as it is obscured by the activity of irrelevant323

neurons. While the mean cosine similarity of hidden states shows relatively strong predictive power324

for Chronos and Chronos-Bolt, it fails to generalize to TimesFM.325

Ablation study (RQ4). We compare the performance SSIM intervention with the following variants:326

(1) w/o adaptive scaling: using a constant scaling factor λ for each layer; (2) w/o centering: scaling327

neuron activations without subtracting the mean across positions [10, 35]. From Figure 5, SSIM328
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Table 3: The results of hallucination detection and forecast performance prediction for TSFMs,
with the best results highlighted in boldface. For each compared method, the first column shows
AUROC and the latter two columns show rank correlations. The statistical significance of positive
rank correlation is indicated with * for p < 0.05 and ** for p < 0.01.

Model Domain
Cosine Similarity Activation Variance SSAS (Ours)

Hal R2 Corr Hal R2 Corr Hal R2 Corr

C
h
r
o
n
o
s

Synthetic 0.7847 0.3834∗∗ 0.3262∗∗ 0.6786 0.3734∗∗ 0.4052∗∗ 0.8316 0.4299∗∗ 0.5111∗∗

Econ/Fin 0.8495 0.6501∗∗ 0.6208∗∗ 0.6927 0.5096∗∗ 0.5507∗∗ 0.7833 0.5034∗∗ 0.5258∗∗

Energy 0.7124 0.5088∗∗ 0.3528∗∗ 0.8093 −0.1116 0.0373 0.8096 0.1166∗∗ 0.0363

Nature 0.4978 0.3382∗∗ 0.1524∗∗ 0.5384 0.3490∗∗ 0.1886∗∗ 0.5925 0.3430∗∗ 0.1507∗∗

Transport 0.6601 0.4706∗∗ 0.5550∗∗ 0.7466 0.5351∗∗ 0.6083∗∗ 0.6767 0.4158∗∗ 0.5234∗∗

WebOps 0.5542 0.2328∗∗ 0.3710∗∗ 0.5060 0.1363∗∗ 0.2720∗∗ 0.5740 0.1693∗∗ 0.2526∗∗

Aggregated 0.7903 0.5866∗∗ 0.5804∗∗ 0.7226 0.4197∗∗ 0.5277∗∗ 0.8086 0.5082∗∗ 0.5758∗∗

C
h
r
o
n
o
s
-
B
o
l
t

Synthetic 0.4416 −0.1767 −0.0361 0.4011 −0.3806 −0.3569 0.5282 0.2363∗∗ 0.2142∗∗

Econ/Fin 0.2247 −0.5253 −0.5530 0.3851 −0.3600 −0.4283 0.8528 0.6289∗∗ 0.5979∗∗

Energy 0.5360 0.2052∗∗ 0.1488∗∗ 0.4739 0.4158∗∗ 0.3741∗∗ 0.7451 −0.0603 −0.0865

Nature 0.9343 −0.1155 0.3819∗∗ 0.9395 −0.1003 0.3842∗∗ 0.6340 0.0895∗ 0.1690∗∗

Transport 0.7183 0.2601∗∗ 0.2394∗∗ 0.6656 0.2730∗∗ 0.2064∗∗ 0.6416 0.2850∗∗ 0.2858∗∗

WebOps 0.6656 0.1315∗∗ 0.4091∗∗ 0.5224 −0.0236 0.1767∗∗ 0.6518 0.2188∗∗ 0.3423∗∗

Aggregated 0.6279 0.0462∗ 0.2607∗∗ 0.6131 0.0789∗∗ 0.1840∗∗ 0.7991 0.3860∗∗ 0.5037∗∗

T
i
m
e
s
F
M

Synthetic 0.4892 −0.2210 −0.1684 0.3821 −0.3302 −0.2738 0.4902 −0.0081 −0.0359

Econ/Fin 0.2210 −0.6896 −0.6568 0.1930 −0.5539 −0.5192 0.4625 −0.0932 −0.0987

Energy 0.2898 −0.2597 −0.1570 0.2777 −0.1531 −0.1911 0.7469 0.1407∗∗ 0.1042∗

Nature 0.4042 −0.0565 −0.0041 0.7912 0.0587 0.3480∗∗ 0.8934 0.1744∗∗ 0.3870∗∗

Transport 0.4881 −0.0669 −0.0174 0.6121 0.1892∗∗ 0.2710∗∗ 0.6529 0.3483∗∗ 0.3622∗∗

WebOps 0.3756 −0.3497 −0.2117 0.5615 −0.1001 0.1046∗ 0.6365 0.0637 0.2418∗∗

Aggregated 0.3963 −0.2608 −0.1767 0.5211 −0.0517 0.0634∗ 0.6890 0.2636∗∗ 0.3552∗∗
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Figure 5: The aggregated mean performance of SSIM and the variants for TSFMs.

consistently outperforms the variants. The performance differences are significant with p < 0.01 by329

paired t-tests, highlighting the effectiveness of our design. The adaptive scaling enables more detailed330

control of the intervention, providing greater magnification when weak signal information is detected331

at a layer. The centering operation emphasizes activation differences that facilitate reducing the332

similarity between hidden states and avoids changing the mean activations of the intervened neurons.333

6 Conclusion334

TSFMs represent a promising paradigm for time series analysis, yet the issue of hallucinations335

has been unexplored in existing literature. We have formally defined TSFMs hallucination in the336

zero-shot forecasting setting and outlined the rules for checking hallucinations in practice. We have337

found that hallucinations are mainly caused by a lack of context information in hidden states through338

experimental analyses. We have proposed a methodology to identify the signal spaces and a measure339

to quantify the signal strength of hidden states. We have further developed an intervention approach340

that mitigates hallucinations by magnifying the signal information of hidden states. Extensive341

experiments have demonstrated that our intervention approach effectively mitigates hallucinations342

and improves the quality of forecasts of TSFMs. The signal strength measure we proposed has shown343

strong predictive power of both hallucinations and the forecast performance. Our work contributes to344

deeper understanding of TSFM trustworthiness that could foster future research in this direction.345
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