
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Siqiao Mu 1 Diego Klabjan 2

Abstract
Machine unlearning algorithms aim to efficiently
remove data from a model without retraining it
from scratch, in order to remove corrupted or out-
dated data or respect a user’s “right to be forgot-
ten.” Certified machine unlearning is a strong theo-
retical guarantee based on differential privacy that
quantifies the extent to which an algorithm erases
data from the model weights. In contrast to ex-
isting works in certified unlearning for convex or
strongly convex loss functions, or nonconvex ob-
jectives with limiting assumptions, we propose the
first, first-order, black-box (i.e., can be applied to
models pretrained with vanilla gradient descent)
algorithm for unlearning on general nonconvex
loss functions, which unlearns by “rewinding” to
an earlier step during the learning process before
performing gradient descent on the loss function
of the retained data points. We prove (ϵ, δ) certi-
fied unlearning and performance guarantees that
establish the privacy-utility-complexity tradeoff
of our algorithm, and we prove generalization
guarantees for nonconvex functions that satisfy
the Polyak-Lojasiewicz inequality. Finally, we
implement our algorithm under a new experimen-
tal framework that more accurately reflects real-
world use cases for preserving user privacy.

1. Introduction
Machine unlearning, or data deletion from models, refers to
the problem of removing the influence of some data from a
trained model without the computational expenses of com-
pletely retraining it from scratch (Cao & Yang, 2015). This
research direction has become highly relevant in the last few
years, due to increasing concern about user privacy and data
security as well as the growing cost of retraining massive
deep learning models on constantly updated datasets. For
example, recent legislation that protects a user’s “Right to
be Forgotten,” including the European Union’s General Data

1Department of Engineering Sciences and Applied Mathematics,
Northwestern University, Evanston, IL, USA 2Department of In-
dustrial Engineering and Management Sciences, Northwestern
University, Evanston, IL, USA. Correspondence to: Siqiao Mu
<siqiaomu2026@u.northwestern.edu>.

Protection Regulation (GDPR), the California Consumer
Privacy Act (CCPA), and the Canadian Consumer Privacy
Protection Act (CPPA), mandate that users be allowed to re-
quest removal of their personal data, which may be stored in
databases or memorized by models (Sekhari et al., 2021). In
addition, machine unlearning has practical implications for
removing the influence of corrupted, outdated, or mislabeled
data (Kurmanji et al., 2023; Nguyen et al., 2024).

The typical goal of machine unlearning algorithms is to
yield a model that resembles the model obtained from a
full retrain on the updated dataset after data is removed.
This requirement is formalized in the concept of “certified
unlearning,” a strong theoretical guarantee motivated by dif-
ferential privacy that probabilistically bounds the difference
between the model weights returned by the unlearning and
retraining algorithms (Guo et al., 2019). However, algo-
rithms satisfying certified unlearning need to also be practi-
cal. For example, a trivial unlearning algorithm retrains the
model from scratch on the retained dataset, but this would
provide no efficiency gain. On the other hand, unlearning
is also provably satisfied if the learning and unlearning al-
gorithm both output weights randomly sampled from the
same Gaussian distribution, but this would yield a poorly
performing model. Therefore, an ideal algorithm optimally
balances data deletion, model accuracy, and computation,
also known as the “privacy-utility-efficiency” tradeoff (Liu
et al., 2024). Moreover, because training from scratch is
computationally expensive in the machine unlearning set-
ting, we desire black-box unlearning algorithms, which can
be applied to pretrained models and do not require training
with the intention of unlearning later.

Most certified unlearning algorithms are designed for con-
vex or strongly convex functions (Guo et al., 2019; Neel
et al., 2021; Sekhari et al., 2021). Relaxing the convexity re-
quirement is challenging since nonconvex functions do not
have unique global minima. Recently, there have been sev-
eral works that provide certified unlearning guarantees for
nonconvex functions. For example, (Zhang et al., 2024) pro-
poses a single-step Newton update algorithm with convex
regularization followed by Gaussian perturbation, inspired
by existing second-order unlearning methods such as (Guo
et al., 2019; Sekhari et al., 2021). Similarly, (Qiao et al.,
2024) proposes a quasi-second-order method that exploits
Hessian vector products to avoid directly computing the

1

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Hessian. Finally, (Chien et al., 2024a) proposes a first-order
method in the form of projected noisy gradient descent with
Gaussian noise added at every step.

Prior work has focused on achieving theoretical unlearn-
ing guarantees in the nonconvex setting; however, practical
unlearning algorithms should also be computationally effi-
cient and convenient to use. First, (Zhang et al., 2024) and
(Qiao et al., 2024) are both (quasi) second-order methods,
but first-order methods that only require computing the gra-
dient are more computationally efficient and require less
storage. Second, (Chien et al., 2024a; Qiao et al., 2024)
are not black-box, since during the training process, (Chien
et al., 2024a) requires injecting Gaussian noise at every step
and (Qiao et al., 2024) requires recording a statistical vector
for each data sample at each time step. These “white-box”
algorithms require significant changes to standard learning
algorithms, which hinders easy implementation. Table 1
summarizes these results and Appendix C provides a more
thorough comparison with prior work.

In this work, we introduce “rewind-to-delete” (R2D), a first-
order, black-box, certified unlearning algorithm for general
nonconvex functions. Our learning algorithm consists of
vanilla gradient descent steps on the loss function of the
dataset followed by Gaussian perturbation. To remove some
data from the model, our unlearning algorithm “rewinds”
to a model checkpoint from earlier in the original training
trajectory, performs additional gradient descent steps on the
new loss function, and again adds Gaussian perturbation
to the weights. The checkpoint can be saved during the
training period (which is standard practice), or it can be
computed post hoc from a pretrained model via the proxi-
mal point method. We prove (ϵ, δ) certified unlearning for
our algorithm and provide theoretical guarantees that explic-
itly address the “privacy-utility-efficiency” tradeoff of our
unlearning algorithm. Our algorithm is easy to implement
and relies on simple assumptions. In addition, the algorithm
is black-box, as it can be applied to a pretrained model as
long as the model was trained with vanilla gradient descent.

We also analyze the case of nonconvex functions that satisfy
the Polyak-Łojasiewicz (PL) inequality. The PL inequality
is a weak condition that guarantees the existence of a con-
nected basin of global minima, to which gradient descent
converges at a linear rate (Karimi et al., 2016). This property
allows us to derive empirical risk convergence and gener-
alization guarantees, despite nonconvexity. PL functions
are highly relevant to deep learning because overparame-
terized neural networks locally satisfy the PL condition in
neighborhoods around initialization (Liu et al., 2022).

Finally, we empirically demonstrate the privacy-utility-
efficiency tradeoff of our algorithm and its superior perfor-

1 (Guo et al., 2019) 2 (Neel et al., 2021) 3 (Chien et al., 2024a)
4 (Zhang et al., 2024) 5 (Qiao et al., 2024)

Table 1. Comparison of certified unlearning algorithms for con-
vex and nonconvex functions. d is the dimension of the model
parameters and n is the size of the training dataset.

ALGORITHM LOSS
FUNCTION

METHOD STORAGE BLACK-
BOX?

NEWTON STEP1 STRONGLY
CONVEX

SECOND-
ORDER

O(d2) ×

DESCENT-TO-
DELETE 2

STRONGLY
CONVEX

FIRST-
ORDER

O(d)
√

LANGEVIN
UNLEARNING3

NONCONVEX FIRST-
ORDER

O(d) ×

CONSTRAINED
NEWTON STEP4

NONCONVEX SECOND-
ORDER

O(d2)
√

HESSIAN-FREE
UNLEARNING 5

NONCONVEX QUASI-
SECOND-
ORDER

O(nd) ×

OUR WORK
(R2D)

NONCONVEX FIRST-
ORDER

O(d)
√

mance compared to existing certified unlearning algorithms
for nonconvex functions. We use real-world medical or
facial data, with each dataset derived from a collection of
users. In contrast to most unlearning experiments, which ei-
ther select unlearned samples uniformly at random or from a
specific class, we train a neural network model to learn some
global characteristics about a dataset, and unlearn data from
a subset of the users, thereby simulating realistic unlearning
requests and their impact on model utility. This results in an
unlearned dataset that is not i.i.d. to the training or test set.
To assess unlearning empirically, we conduct a membership
inference attack (MIA) (Shokri et al., 2016) comparing the
unlearned model output on the unlearned dataset and an
out-of-distribution dataset, constructed separately from data
and users not present in the training data. Comparing with
baseline methods, on the medical dataset we outperform
(Zhang et al., 2024) by 9-24 accuracy percentage points
using 41%-80% rewinding, and on the facial dataset we out-
perform (Zhang et al., 2024) by 23-36 accuracy percentage
points and 3%-5% on unlearning, using 51%-75% rewind-
ing, and we are comparable in compute time.6 Compared
to the white-box algorithm (Qiao et al., 2024), we are com-
petitive in accuracy and unlearning and 70-104 times faster
during training, despite using more steps. Ultimately, our
first-order method enjoys the benefits of minimal computa-
tional requirements, easy off-the-shelf implementation, and
competitive performance.

Our contributions are as follows.

• We develop the first (ϵ, δ) certified unlearning algo-
rithm for nonconvex loss functions that is first-order
and black-box.

• We prove theoretical unlearning guarantees that demon-

6 See Table 8 and 9 in the Appendix for numerical details.

2

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

strate the privacy-utility-efficiency tradeoff of our al-
gorithm, allowing for controllable noise at the expense
of privacy or computation. For the special case of
PL loss functions, we obtain linear convergence and
generalization guarantees.

• We conduct experiments demonstrating the efficacy
and utility of our algorithm under a novel experimental
framework that better reflects real-world unlearning
scenarios for protecting user privacy.

1.1. Related Work

Differential privacy. Differential privacy (DP) (Dwork
et al., 2006) is a well-established framework designed to
protect individual privacy by ensuring that the inclusion
or exclusion of any single data point in a dataset does not
significantly affect the output of data analysis or modeling,
limiting information leakage about any individual within
the dataset. Specifically, a differentially private learning
algorithm yields a model trained on some dataset that is
probabilistically indistinguishable from a model trained on
the same dataset with a data sample removed or replaced.
The concept of (ϵ, δ)-privacy quantifies the strength of this
privacy guarantee in terms of the privacy loss, ϵ, and the
probability of a privacy breach, δ (Dwork & Roth, 2014).
This privacy can be injected during or after training by
adding controlled noise to the data, model weights (Wu
et al., 2017; Zhang et al., 2017), gradients (Abadi et al.,
2016; Zhang et al., 2017), or objective function (Chaudhuri
et al., 2011), in order to mask information about any one
sample in the dataset. However, greater noise typically
corresponds to worse model performance, leading to a trade-
off between utility and privacy. The theory and techniques
of differential privacy provide a natural starting point for
the rigorous analysis of unlearning algorithms.

As observed in (Wu et al., 2017), “white-box” differentially
private algorithms, which require code changes to inject
noise at every training step, are challenging to deploy in the
real world due to additional development and runtime over-
head incurred from implementing a nonstandard learning
algorithm. Rather than adding noise at each iteration, (Wu
et al., 2017) and (Zhang et al., 2017) propose DP algorithms
that only perturb the output after training, an approach which
is easier to integrate into real-world development pipelines.
In similar fashion, our proposed black-box unlearning algo-
rithm can be implemented without any special steps during
learning with gradient descent. We also do not inject noise at
each iteration, only perturbing at the end of training. The dif-
ference between our approach and (Wu et al., 2017; Zhang
et al., 2017), however, is that our approach can accommo-
date the nonconvex case, leveraging model checkpointing
to control the distance from the retraining trajectory.

Certified unlearning. The term “machine unlearning” was

first coined by (Cao & Yang, 2015) to describe a determinis-
tic data deletion algorithm, which has limited application to
general optimization problems. In the following years, tech-
niques have been developed for “exact unlearning,” which
exactly removes the influence of data, and “approximate un-
learning,” which yields a model that is approximately close
to the retrained model with some determined precision (Xu
et al., 2023). Our work focuses on the latter. Both (Ginart
et al., 2019) and (Guo et al., 2019) introduce a probabilistic
notion of approximate unlearning, where the unlearning and
retraining outputs must be close in distribution. Inspired by
differential privacy, (Guo et al., 2019) introduces the defini-
tion of certified (ϵ, δ) unlearning used in this work. Like DP
algorithms, certified unlearning algorithms typically require
injected noise to the weights or objective function, which
can degrade model performance. Moreover, unlearning algo-
rithms are also designed to reduce computation, leading to a
three-way trade-off between privacy, utility, and complexity.

Certified unlearning has been studied for a variety of set-
tings, including linear and logistic models (Guo et al., 2019;
Izzo et al., 2021), graph neural networks (Chien et al., 2022),
minimax models (Liu et al., 2023), and the federated learn-
ing setting (Fraboni et al., 2024), as well as convex models
(Sekhari et al., 2021; Neel et al., 2021; Suriyakumar &
Wilson, 2022; Chien et al., 2024b) and nonconvex mod-
els (Chien et al., 2024a; Qiao et al., 2024; Zhang et al.,
2024). These algorithms can be categorized as first-order
methods that only require access to the function gradients
(Neel et al., 2021; Chien et al., 2024b) or second-order meth-
ods that leverage information from the Hessian to approx-
imate the model weights that would result from retraining
(Sekhari et al., 2021; Suriyakumar & Wilson, 2022; Zhang
et al., 2024; Qiao et al., 2024). Our work is inspired by
the “descent-to-delete” algorithm (Neel et al., 2021), a first-
order unlearning algorithm for strongly convex functions
that unlearns by fine-tuning with gradient descent iterates
on the loss function of the retained samples.

Nonconvex unlearning. There are also many approximate
unlearning algorithms for nonconvex functions that rely on
heuristics or weaker theoretical guarantees. For example,
(Bui et al., 2024) proposes a “weak unlearning” algorithm,
which considers indistinguishability with respect to model
output space instead of model parameter space. This is a
weaker guarantee because the model weights may still retain
information about the unlearned data and be susceptible to
membership inference attacks. Another popular algorithm
for neural networks is SCRUB (Kurmanji et al., 2023), a
gradient-based algorithm that balances maximizing error
on the unlearned data and maintaining performance on the
retained data. An extension of SCRUB, SCRUB+Rewind,
“rewinds” the algorithm to a point where the error on the
unlearned data is “just high enough,” so as to impede mem-
bership inference attacks. Finally, although (Golatkar et al.,

3

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

2019; 2020) propose unlearning algorithms for deep neural
networks, they only provide a general upper bound on the
amount of information retained in the weights rather than a
strict certified unlearning guarantee.

Additional approaches include subtracting out the impact
of the unlearned data in each batch of gradient descent
(Graves et al., 2021), gradient ascent on the loss function
of the unlearned data (Jang et al., 2023), and retraining the
last layers of the neural network on the retained data (Goel
et al., 2022). Ultimately, while the ideas of checkpointing,
gradient ascent, and “rewinding” have been considered in
other machine unlearning works, our algorithm combines
these elements in a novel manner to obtain strong theoretical
guarantees that prior algorithms lack.

2. Algorithm
Let D = {z1, ..., zn} be a training dataset of n data points
drawn independently and identically distributed from the
sample space Z , and let Θ be the model parameter space.
Let A : Zn → Θ be a (randomized) learning algorithm that
trains on D and outputs a model with weight parameters
θ ∈ Θ, where Θ is the (potentially infinite) space of model
weights. Typically, the goal of a learning algorithm is to
minimize fD(θ), the empirical loss on D, defined as follows

fD(θ) =
1

n

n∑
i=1

fzi(θ),

where fzi(θ) represents the loss on the sample zi.

Let us “unlearn” or remove the influence of a subset of data
Z ⊂ D from the output of the learning algorithm A(D). Let
D′ = D\Z, and we denote by U(A(D),D, Z) the output of
an unlearning algorithm U . The goal of the unlearning algo-
rithm is to output a model parameter that is probabilistically
indistinguishable from the output of A(D′). This is formal-
ized in the concept of (ϵ, δ)-indistinguishability, which is
used in the DP literature to characterize the influence of a
data point on the model output (Dwork & Roth, 2014).
Definition 2.1. (Dwork & Roth, 2014; Neel et al., 2021)
Let X and Y be random variables over some domain Ω. We
say X and Y are (ϵ, δ)-indistinguishable if for all S ⊆ Ω,

P[X ∈ S] ≤ eϵP[Y ∈ S] + δ,

P[Y ∈ S] ≤ eϵP[X ∈ S] + δ.

In the context of differential privacy, X and Y are the learn-
ing algorithm outputs on neighboring datasets that differ in
a single sample. ϵ is the privacy loss or budget, which can
be interpreted as a limit on the amount of information about
an individual that can be extracted from the model, whereas
δ accounts for the probability that these privacy guarantees
might be violated. Definition 2.1 extends naturally to the
following definition of (ϵ, δ) certified unlearning.

Definition 2.2. Let Z denote a subset of the training dataset
which we would like to unlearn. Then U is an (ϵ, δ) certified
unlearning algorithm for A if for all such Z, U(A(D),D, Z)
and A(D\Z) are (ϵ, δ)-indistinguishable.

Next, we describe our algorithms for machine unlearning.
The learning algorithm A (Algorithm 1) performs gradient
descent updates on fD for T iterations, and the iterate at
the T −K time step is saved as a checkpoint or computed
post hoc via the proximal point algorithm (Algorithm 3).
Then Gaussian noise is added to the final parameter θT ,
and the perturbed parameter is used for model inference.
When a request is received to remove the data subset Z, the
checkpointed model parameter θT−K is loaded as the initial
point of the unlearning algorithm U (Algorithm 2). Then we
perform K gradient descent steps on the new loss function
fD′ and add Gaussian noise again to the final parameter,
using the perturbed weights for future model inference.

Algorithm 1 A: Rewind-To-Descent (R2D) Learning Algo-
rithm
Require: dataset D, initial point θ0 ∈ Θ

for t = 1, 2, ..., T do
θt = θt−1 − η∇fD(θt−1) {Gradient descent steps}

end for
Save checkpoint θT−K or compute θT−K via
Algorithm 3
Sample ξ ∼ N (0, σ2Id)
θ̃ = θT + ξ {Gaussian perturbation}
Use θ̃ for model inference
Upon receiving an unlearning request, call Algorithm 2

Algorithm 2 U : R2D Unlearning Algorithm

Require: dataset D′, model checkpoint θT−K

θ′′0 = θT−K

for t = 1, ..., K do
θ′′t = θ′′t−1 − η∇fD′(θ′′t−1) {Gradient descent steps}

end for
Sample ξ ∼ N (0, σ2Id)
θ̃′′ = θ′′K + ξ {Gaussian perturbation}
Use θ̃′′ for model inference

When a model is trained without a checkpoint saved, we can
still obtain a black-box unlearning algorithm by carefully
“rewinding” the gradient descent training steps via the proxi-
mal point method, outlined in Algorithm 3. We can solve
for previous gradient descent iterates through the following
implicit equation (2):

θt+1 = θt − η∇fD(θt) (1)
θt =θt+1 + η∇fD(θt). (2)

The backward Euler update in (2) is distinct from a standard
gradient ascent step, which is a forward Euler method. In-

4

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

stead, we compute θt from θt+1 by taking advantage of the
connection between backward Euler for gradient flow and
the proximal point method, an iterative algorithm for mini-
mizing a convex function (Martinet, 1970). Let g(θ) denote
a convex function. The proximal point method minimizes
g(θ) by taking the proximal operator with parameter γ of
the previous iterate, defined as follows

θk+1 = proxg,γ(θk) = argmin
x

{g(x) + 1

2γ
||x− θk||2}.

Although for our problem, f is nonconvex, adding sufficient
regularization produces a convex and globally tractable prox-
imal point subproblem, stated in Lemma A.1. Therefore, by
computing the proximal operator with respect to −f(θ), we
can solve the implicit gradient ascent step.

Lemma 2.3. Suppose f(θ) is continuously differentiable,
θt is defined as in (2), and let η < 1

L . Then θt =
prox−f,η(θt+1).

The proof of Lemma 2.3 is provided in Appendix A.

Algorithm 3 Compute Checkpoint via Proximal Point
Method
Require: datasets D, model checkpoint θT

θ′′0 = θT
for t = 1, ..., K do
θ′′t = argminx{−fD(x) +

1
2η ||x− θ′′t−1||2}

end for
Return θ′′K

If η < 1
L , then due to convexity, we can solve the proximal

point subproblem easily via gradient descent or Newton’s
method. Computationally, when K ≪ T , the algorithm is
comparable to other second-order unlearning methods that
require a single Newton step. In addition, we only need
to compute the model checkpoint once prior to unlearning
requests, so this computation can be considered “offline”
(Izzo et al., 2021; Qiao et al., 2024).

3. Analyses
In the following theorem, we establish the unlearning and
performance guarantees for our algorithm on nonconvex
functions. For nonconvex functions, gradient descent might
converge to local minima or saddle points, so we measure
the performance by the average of the gradient norm over
iterates, a common DP performance metric for algorithms
on nonconvex functions.

Theorem 3.1. Let ϵ, δ be fixed such that 0 < ϵ ≤ 1 and
δ > 0. Suppose for all z ∈ Z , the loss function fz is
L-Lipschitz smooth and the gradient is uniformly bounded
by some constant G so that ∥∇fz(θ)∥ < G for all θ ∈ Θ.
Let D denote the original dataset of size n, let Z ⊂ D

denote the unlearned dataset of size m, and let D′ = D\Z
denote the retained dataset. Let the learning algorithm A
be initialized at θ0 and run for T iterations with step size
η ≤ min{ 1

L ,
n

2(n−m)L}. Let the standard deviation σ of the
Gaussian noise be defined as

σ =
2mG · h(K)

√
2 log(1.25/δ)

Lnϵ
, (3)

where h(K) is a function that monotonically decreases to
zero as K increases from 0 to T defined by

h(K) = ((1 +
ηLn

n−m
)T−K − 1)(1 + ηL)K .

Then U is an (ϵ, δ)-unlearning algorithm for A with noise
σ. In addition,∑T−K−1

t=0 ||∇fD′(θt)||2 +
∑K−1

t=0 ||∇fD′(θ′′t)||2

T

+
E[||∇fD′(θ̃′′)||2]

T
≤ O(

n

T (n−m)
)+O(

(T −K − 1)m

T (n−m)
)

(4)

where the expectation is taken with respect to the Gaus-
sian noise added at the end of U , and where O(·) hides
dependencies on η, G, and L.

Corollary 3.2. For fixed σ and δ, the dependence of K on
ϵ in (3), denoted as K(ϵ), is upper-bounded as follows:

K(ϵ) ≤
log

(
(1 + ηLn

n−m)T − σLnϵ

2mG
√

2 log(1.25/δ)

)
log(1 + ηLn

n−m)
. (5)

Equation (4) states that the average of the gradient norm
squared of the initial T − K learning iterates, the K −
1 unlearning iterates after, and the last perturbed iterate
θ̃′′ decreases with increasing T and n, indicating that the
algorithm converges to a stationary point with small gradient
norm. Corollary 3.2 provides an upper bound on K(ϵ),
such that in practice we can choose K equal to this bound
to ensure the privacy guarantee is achieved. We show in
Figure 1c that this bound is close to tight for 0 < ϵ ≤ 1 and
real-world parameters.

The proof of Theorem 3.1 is provided in Appendix B. The
proof of Corollary 3.2 is in Appendix B.3. The analysis
relies on carefully tracking the distance between the un-
learning iterates and gradient descent iterates on fD′ . Like
prior work in certified unlearning, our analysis relies on
the Gaussian mechanism for differential privacy (Dwork
& Roth, 2014), which implies that as long as the distance
between the trajectories is bounded, we can add a sufficient
amount of Gaussian noise to make the algorithm outputs (ϵ,
δ)-indistinguishable. We therefore can compute the noise

5

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

level σ required to achieve unlearning. For the utility guar-
antees, we leverage the fact that gradient descent steps on
fD also make progress on fD′ to obtain bounds that only
depend on problem parameters and the initialization θ0.

Theorem 3.1 underscores the “privacy-utility-complexity”
tradeoff between our measure of unlearning, ϵ, noise, σ, and
the number of unlearning iterations, K. By construction,
K < T , so our algorithm is more efficient than retraining.
We can pick larger K such that the noise required is arbitrar-
ily small at the expense of computation, and when K = T
our algorithm amounts to a noiseless full retrain. Moreover,
the standard deviation σ inversely scales with the size of
the dataset n, implying that unlearning on larger datasets re-
quire less noise. In contrast, (Zhang et al., 2024) and (Qiao
et al., 2024) do not feature such data-dependent guarantees.
Remark 3.3. Theorem 3.1 applies to unlearning a batch of
m data samples. Our algorithm also accommodates sequen-
tial unlearning requests. If, after unlearning m points, an
additional k unlearning requests arrive, we simply call the
unlearning algorithm M on the new retained dataset of size
n−m− k. Notably, if the total number of unlearned data
increases while σ and K stay constant, our unlearning guar-
antee worsens, which is consistent with other results (Guo
et al., 2019; Zhang et al., 2024; Chien et al., 2024a).

We can obtain faster convergence if we consider Polyak-
Lojasiewicz (PL) functions, which are nonconvex functions
that satisfy the following PL inequality.

Definition 3.4. (Karimi et al., 2016) For some function
f , suppose it attains a global minimum value f∗. Then f
satisfies the PL inequality if for some µ > 0 and all x,

1

2
||f(x)||2 ≥ µ(f(x)− f∗). (6)

Although PL functions may be nonconvex, they have a con-
tinuous basin of global minima, so we can obtain empirical
risk bounds. Corollary 3.5 states that the empirical risk con-
verges linearly with both T and K. The proof is provided
in Appendix B.1.

Corollary 3.5. Suppose the conditions of Theorem 3.1 hold
and in addition, fD′ satisfies the PL condition with param-
eter µ. Let f∗

D′ represent the global optimal value of fD′ .
Then

E[fD′(θ̃′′)]−f∗
D′ ≤ L

√
dσ+(1−ηµ)K

G2m+ LηGm

µ(n−m)

+ (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′)

where σ is defined in (3) and the expectation is taken with
respect to the Gaussian noise added at the end of U .

Our performance guarantees demonstrate that more learning
iterates T correspond to better performance upon unlearning.

For PL functions, the utility converges faster with increasing
T than for the general nonconvex case.

Although practical algorithms typically minimize the em-
pirical risk, the ultimate goal of learning is to minimize the
population risk, given by

F (θ) = Ez∼Z [fz(θ)], (7)

in order to determine how well the model will generalize
on unseen test data. We leverage results from (Lei & Ying,
2021) that relate the on-average stability bounds of algo-
rithms on PL functions to their excess population risk.
Corollary 3.6. Suppose the conditions of Theorem 3.1 hold
and in addition, fD′ satisfies the PL condition with param-
eter µ. Let F ∗ represent the global optimal value of F ,
defined in (7). Then

E[F (θ̃′′)]− F ∗ ≤ L
√
dσ +

2G2

(n−m)µ

+
L

2µ
(1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′)

+
L

2µ
(1− ηµ)K

G2m+ LηGm

µ(n−m)

where σ is defined in (3) and the expectation is taken with
respect to i.i.d. sampling of D ∼ Z and the Gaussian noise
added at the end of U .

4. Experiments
For more experiment details, including choice of hyperpa-
rameters, baseline implementations, hardware, and numeri-
cal results, see Appendix D.

4.1. Experimental Framework

We test our algorithm (Algorithms 1 and 2) in experimental
settings that reflect real-world use cases of unlearning for
protecting user privacy. For all experiments, we train a
binary classifier with the cross-entropy loss function over a
dataset that is naturally split among many different users. To
test unlearning, we remove the data associated with a subset
of the users (1%-2% of the data) and observe the impact
on the original binary classification task. The unlearned
dataset is therefore not i.i.d. to the training or test dataset.
Our experimental framework better reflects unlearning in
practice, where users may request the removal of their data
but they do not each represent a class in the model. This
stands in contrast to existing unlearning experiments that
unlearn data from a selected class (Guo et al., 2019; Golatkar
et al., 2019; Kurmanji et al., 2023), or randomly select
samples uniformly from the dataset to unlearn (Zhang et al.,
2024; Qiao et al., 2024). 7

7 Code is open-sourced at the following anonymized link:
https://github.com/anonymous-1234567/r2d.

6

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

(a) Test error vs. rewind
percent.

(b) Test error vs. ϵ. (c) K vs. ϵ. (d) MIA score vs. ϵ. (e) Error on unlearned
data after unlearning.

Figure 1. Privacy-utility-complexity tradeoff of R2D. The top row shows the experiments on the eICU dataset, and the bottom row shows
the experiments on the Lacuna-100 dataset. Figures 1a, 1b, 1c demonstrate the tradeoff between accuracy and computation/unlearning.
Figures 1d, 1e evaluate unlearning as measured by the MIA score and the error on the unlearned data before and after unlearning. The
unlearning computations are represented by the rewind percent, or K

T
× 100%.

4.2. Implementation

We make some approximations of our theory to implement
the algorithm in practice. Instead of full-batch gradient
descent, we use stochastic gradient descent with a large
batch size and sampling without replacement (i.e. shuffling).
In addition, while the noise equation (3) assumes constant
step size, we use an exponentially decaying step size that
allows training to make sufficient progress early on, taking
the final step size as η. Moreover, for ϵ > 1, we utilize
the bound derived in (Balle & Wang, 2018) to calibrate the
noise. For unlearning, we start the step size at the value
at the checkpoint. Finally, we estimate the values L and
G using sampling approaches outlined in Appendix D. An
alternate approach would be to set these parameters as “tun-
able hyperparameters,” which, as noted in (Zhang et al.,
2024) may lead to more imprecise certification guarantees.
Future directions of this research include developing theory
to incorporate these approximations.

4.3. Datasets

We consider small-scale and large-scale nonconvex settings,
performing binary classification on datasets that contain
medical or facial information about a set of users.

For the small-scale experiments, we train a multilayer per-
ceptron (MLP) to perform classification on the eICU dataset,
a large multi-center intensive care unit (ICU) database con-
sisting of tabular data on ICU admissions (Pollard et al.,
2018). Each patient is linked with 1-24 hospital stays. We
predict if the length of a hospital stay of a patient is longer or
shorter than a week using the intake variables of the Acute
Physiology Age Chronic Health Evaluation (APACHE) pre-
dictive framework, including blood pressure, body tempera-
ture, and age. For unlearning, we unlearn a random subset

of patients and their corresponding data.

For the large-scale experiments, we consider the VGGFace2
dataset, which is a dataset of approximately 9, 000 celebri-
ties and their face images from the internet (Cao et al., 2018).
We apply the MAAD-Face annotations from (Terhörst et al.,
2020) to label each celebrity as male or female, and sam-
ple a class balanced dataset of 100 celebrities to form the
Lacuna-100 dataset as described in (Golatkar et al., 2019).
We train a ResNet-18 neural network model to perform bi-
nary gender classification. For unlearning, we remove a
random subset of the celebrities and their face images.

4.4. Unlearning Metrics

To empirically evaluate unlearning, we consider the error on
the unlearned data before and after unlearning. An increase
in error suggests the model is losing information about the
data. We also employ black-box membership inference
attacks (MIA) that aim to distinguish between unlearned
data and data that has never been in the training dataset
(Shokri et al., 2016). We train a logistic regression model
to classify data samples based on the output (logits and
loss) of the unlearned model. We measure the success of
the MIA with AUROC on the data samples, computed via
repeated k-fold cross-validation (k = 100 for eICU and
k = 5 for Lacuna-100). A higher MIA score corresponds
to less successful unlearning. We perform the MIA on
the unlearned dataset (one class) and an out-of-distribution
(OOD) dataset (the second class) representing data from
users absent from the training data. For the Lacuna-100
dataset, we construct an OOD dataset using an additional
100 users from the VGGFace2 database. For the eICU
dataset, we collect data from the test set from users not
present in the training set to use in the OOD dataset.

7

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

4.5. Results

Figure 1 examines the privacy-utility-complexity tradeoff of
our algorithm for δ = 0.1 and different values of ϵ, σ, and
K. We report the average value over 5 seeds. Figures 1a and
1b show the accuracy-computation and accuracy-unlearning
tradeoff of our algorithm, where “rewind percent” is the
percent of training iterations, computed as K

T × 100%. As
expected, increasing the amount of iteration K for the same
ϵ decreases the error, as does decreasing the strength of the
unlearning guarantee for the same amount of computation.
Figure 1c shows the theoretical computation-unlearning
tradeoff for fixed noise σ = 0.01 in each setting, for both
the numerically computed value of K for values ϵ and the
approximation for K(ϵ) derived in (3.2).

In Figure 1d we empirically assess the extent of unlearn-
ing through membership inference attacks. As expected,
the MIA score increases as ϵ increases and the unlearning
guarantee is relaxed. For the same ϵ, the MIA is generally
more successful when less noise is used. For example, for
the Lacuna-100 setting, the MIA is most successful on the
noiseless fully retrained model. This suggests that the MIA
is picking up on distributional differences between the un-
learned data and the OOD data reflected in the output of
the model, highlighting both the limitations of relying on
the MIA score as an unlearning metric as well as the strong
advantages of theoretical (δ, ϵ) guarantees. Finally, Figure
1e compares the performance of the unlearned model and
the original model (without unlearning) on the unlearned
data. The increase in error after unlearning suggests that the
model is losing information about the samples.

4.6. Comparison with Baseline Methods

We compare our algorithm against two other algorithms with
theoretical (ϵ, δ) unlearning guarantees for nonconvex func-
tions: the Constrained Newton Step method (CNS) (Zhang
et al., 2024), a black-box algorithm which involves a single
Newton step within a constrained parameter set, and the
Hessian-Free method (HF) (Qiao et al., 2024), a white-box
algorithm which involves demanding pre-computation and
storage of data influence vectors during training, allowing
unlearning via simple vector addition later. We do not imple-
ment the white-box algorithm (Chien et al., 2024a) because,
as stated in their work, “the non-convex unlearning bound...

Table 2. Comparison of computation time of algorithms for the
Lacuna-100 dataset, with 26% or 51% training iterations for R2D.
The results for the eICU dataset are in Table 7 in the Appendix.

ALGORITHM LEARNING TIME UNLEARNING TIME

R2D (26%) 1.47 HOURS 0.38 HOURS
R2D (51%) 1.47 HOURS 0.74 HOURS
HF 4.23 DAYS 0.00 HOURS
CNS 0.58 HOURS 0.32 HOURS

Figure 2. Accuracy and unlearning of baseline unlearning methods.
The top row shows the eICU results, and the bottom row shows the
Lacuna-100 results. The left plots show the error on the training,
test, and unlearned dataset. The right plots show the MIA scores.

currently is not tight enough to be applied in practice due to
its exponential dependence on various hyperparameters.” Al-
though HF technically requires O(nd) storage (and O(ndT)
storage during training to compute the unlearning vectors),
which is impractically large for our dataset and model sizes,
for comparison purposes we implement an O(md) version
that only stores the vectors for the data samples we plan
to unlearn. Figure 2 shows the performance of the three
unlearning algorithms on the training, test, and unlearned
dataset as well as the MIA scores after unlearning. In terms
of accuracy, R2D generally performs better than CNS and
worse than HF, depending on the choice of K, due to signif-
icant differences in the noise bounds of each algorithm. The
MIA results suggest that HF is more successful at defending
against membership attacks; however, the low MIA score
for CNS is likely due to overfitting of the logistic regression
model since the amount of noise added to the model is very
high for the range of ϵ considered.

Table 2 compares the computation time of each approach
during learning and unlearning for Lacuna-100, showing
that R2D strongly outperforms HF in learning time, and can
outperform CNS in the computation saved from unlearning.
In contrast, HF, a white-box algorithm, front-loads the com-
putational burden during learning in favor of fast unlearning
later. The findings for eICU, in Table 7 in the Appendix,
are similar. Ultimately, while both CNS and HF are second-
order methods, R2D is a first-order method that provides
competitive performance with minimal computation and
storage requirements.

5. Conclusion
We propose the first black-box, first-order certified-
unlearning algorithm for nonconvex functions, addressing
theoretical and practical limitations of prior work. Our algo-
rithm outperforms existing second-order methods in storage,
computation, accuracy, and unlearning.

8

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Impact Statement
This paper presents work whose goal is to advance the field
of machine unlearning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, pp. 308–318, 2016.

Balle, B. and Wang, Y.-X. Improving the Gaussian mecha-
nism for differential privacy: Analytical calibration and
optimal denoising. In Dy, J. and Krause, A. (eds.), Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 394–403. PMLR, 10–15 Jul 2018.

Bui, N., Lu, X., Sim, R. H. L., Ng, S.-K., and Low, B. K. H.
On Newton’s method to unlearn neural networks. arXiv,
August 2024.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A.
VGGFace2: A dataset for recognising faces across pose
and age. In International Conference on Automatic Face
and Gesture Recognition, 2018.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE Symposium on Secu-
rity and Privacy, pp. 463–480, 2015.

Charles, Z. and Papailiopoulos, D. Stability and general-
ization of learning algorithms that converge to global
optima. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 745–754. PMLR, 10–15 Jul 2018.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. Differ-
entially private empirical risk minimization. Journal of
Machine Learning Research, 12(29):1069–1109, 2011.

Chien, E., Pan, C., and Milenkovic, O. Certified graph
unlearning. In NeurIPS 2022 Workshop: New Frontiers
in Graph Learning, 2022.

Chien, E., Wang, H. P., Chen, Z., and Li, P. Langevin
unlearning. In Privacy Regulation and Protection in
Machine Learning, 2024a.

Chien, E., Wang, H. P., Chen, Z., and Li, P. Certified ma-
chine unlearning via noisy stochastic gradient descent. In
The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, 2024b.

Drusvyatskiy, D. The proximal point method revisited.
arXiv, December 2017. arXiv:1712.06038.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3–4):211–407, 8 2014. ISSN 1551-305X.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
pp. 265–284, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg. ISBN 978-3-540-32732-5.

Elisseeff, A., Evgeniou, T., and Pontil, M. Stability of
randomized learning algorithms. Journal of Machine
Learning Research, 6(3):55–79, 2005.

Fraboni, Y., Van Waerebeke, M., Scaman, K., Vidal, R., Ka-
meni, L., and Lorenzi, M. SIFU: Sequential informed fed-
erated unlearning for efficient and provable client unlearn-
ing in federated optimization. In Dasgupta, S., Mandt, S.,
and Li, Y. (eds.), Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, vol-
ume 238 of Proceedings of Machine Learning Research,
pp. 3457–3465. PMLR, 02–04 May 2024.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making AI
forget you: Data deletion in machine learning. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Goel, S., Prabhu, A., and Kumaraguru, P. Evaluating in-
exact unlearning requires revisiting forgetting. CoRR,
abs/2201.06640, 2022.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine
of the spotless net: Selective forgetting in deep networks.
CoRR, abs/1911.04933, 2019.

Golatkar, A., Achille, A., and Soatto, S. Forgetting out-
side the box: Scrubbing deep networks of informa-
tion accessible from input-output observations. CoRR,
abs/2003.02960, 2020.

Graves, L., Nagisetty, V., and Ganesh, V. Amnesiac ma-
chine learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(13):11516–11524, May 2021.
ISSN 2374-3468.

Guo, C., Goldstein, T., Hannun, A. Y., and van der Maaten,
L. Certified data removal from machine learning models.
CoRR, abs/1911.03030, 2019.

Izzo, Z., Anne Smart, M., Chaudhuri, K., and Zou, J. Ap-
proximate data deletion from machine learning models. In
Banerjee, A. and Fukumizu, K. (eds.), Proceedings of The

9

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 2008–2016. PMLR, 2021.

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigating
privacy risks in language models. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14389–14408,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics.

Karimi, H., Nutini, J., and Schmidt, M. Linear convergence
of gradient and proximal-gradient methods under the
polyak-łojasiewicz condition. In Frasconi, P., Landwehr,
N., Manco, G., and Vreeken, J. (eds.), Machine Learning
and Knowledge Discovery in Databases, pp. 795–811,
Cham, 2016. Springer International Publishing.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafillou,
E. Towards unbounded machine unlearning. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Lei, Y. and Ying, Y. Sharper generalization bounds for
learning with gradient-dominated objective functions. In
International Conference on Learning Representations,
2021.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and opti-
mization in over-parameterized non-linear systems and
neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022. ISSN 1063-5203. Special
Issue on Harmonic Analysis and Machine Learning.

Liu, J., Lou, J., Qin, Z., and Ren, K. Certified minimax
unlearning with generalization rates and deletion capac-
ity. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Liu, Z., Dou, G., Chien, E., Zhang, C., Tian, Y., and Zhu, Z.
Breaking the trilemma of privacy, utility, and efficiency
via controllable machine unlearning. In Proceedings
of the ACM on Web Conference 2024, WWW ’24, pp.
1260–1271, New York, NY, USA, 2024. Association for
Computing Machinery.

Martinet, B. Brève communication. régularisation
d’inéquations variationnelles par approximations succes-
sives. Revue française d’informatique et de recherche
opérationnelle. Série rouge, 4(R3):154–158, 1970. ISSN
0373-8000, 2777-3515.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Feldman, V., Ligett, K., and Sabato, S. (eds.), Proceed-
ings of the 32nd International Conference on Algorithmic

Learning Theory, volume 132 of Proceedings of Machine
Learning Research, pp. 931–962. PMLR, 2021.

Nguyen, T. T., Huynh, T. T., Ren, Z., Nguyen, P. L., Liew, A.
W.-C., Yin, H., and Nguyen, Q. V. H. A survey of machine
unlearning. arXiv, September 2024. arXiv:2209.02299.

Pollard, T. J., Johnson, A. E. W., Raffa, J. D., Celi, L. A.,
Mark, R. G., and Badawi, O. The eICU collaborative
research database, a freely available multi-center database
for critical care research. Scientific Data, 5(1):180178,
September 2018. ISSN 2052-4463.

Qiao, X., Zhang, M., Tang, M., and Wei, E. Efficient and
generalizable certified unlearning: A Hessian-free recol-
lection approach. arXiv, June 2024. arXiv:2404.01712.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. CoRR, abs/2103.03279, 2021.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. Stochastic convex optimization. In Annual Conference
Computational Learning Theory, 2009.

Shamir, G. I., Lin, D., and Coviello, L. Smooth acti-
vations and reproducibility in deep networks. CoRR,
abs/2010.09931, 2020.

Shokri, R., Stronati, M., and Shmatikov, V. Membership
inference attacks against machine learning models. CoRR,
abs/1610.05820, 2016.

Suriyakumar, V. M. and Wilson, A. C. Algorithms that
approximate data removal: New results and limitations.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022.

Terhörst, P., Fährmann, D., Kolf, J. N., Damer, N., Kirch-
buchner, F., and Kuijper, A. MAAD-Face: A mas-
sively annotated attribute dataset for face images. CoRR,
abs/2012.01030, 2020.

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R.
Machine unlearning via algorithmic stability. CoRR,
abs/2102.13179, 2021.

Wu, X., Li, F., Kumar, A., Chaudhuri, K., Jha, S., and
Naughton, J. Bolt-on differential privacy for scalable
stochastic gradient descent-based analytics. In Proceed-
ings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, pp. 1307–1322, 2017.

Xu, H., Zhu, T., Zhang, L., Zhou, W., and Yu, P. S. Machine
unlearning: A survey. ACM Comput. Surv., 56(1), 8 2023.
ISSN 0360-0300.

10

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Zhang, B., Dong, Y., Wang, T., and Li, J. Towards certi-
fied unlearning for deep neural networks. In Forty-first
International Conference on Machine Learning, 2024.

Zhang, J., Zheng, K., Mou, W., and Wang, L. Efficient
private ERM for smooth objectives. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pp. 3922–3928, 2017.

11

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

A. Proof of Lemma 2.3
Proof. We have the following lemma from (Drusvyatskiy, 2017).

Lemma A.1. (Drusvyatskiy, 2017) If f(θ) is continuously differentiable with L-Lipschitz gradient, −f(θ) + L
2 ||θ||

2 is
convex.

Now we define θ∗ as the solution to the proximal problem as follows

θ∗ = prox−f,η(θt+1) = argmin
x

{−f(x) +
1

2η
||x− θt+1||2},

which is well-defined due to Lemma A.1 and the fact that η < 1
L . Then the gradient of the objective function is zero at θ∗

and thus
−∇f(θ∗) +

1

η
(θ∗ − θt+1) = 0,

θ∗ = θt+1 + η∇f(θ∗).

B. Proof of Theorem 3.1
Like prior work in differential privacy and machine unlearning, our work hinges on the Gaussian mechanism for differential
privacy, which ensures (ϵ, δ)-indistinguishability for normal random variables with the same variance.
Theorem B.1. (Dwork & Roth, 2014) Let X ∼ N (µ, σ2Id) and Y ∼ N (µ′, σ2Id). Suppose ∥µ− µ′∥2≤ ∆. Then for any
δ > 0, X and Y are (ϵ, δ)-indistinguishable if

σ =
∆

ϵ

√
2 log(1.25/δ).

Therefore, to prove Theorem 3.1, we need to bound the distance between the output of the unlearning algorithm and the
learning algorithm. We can then add a sufficient amount of noise, scaled by this distance, to achieve (ϵ, δ) unlearning.

Proof. Let Z be a dataset of m data points we would like to unlearn, where m < n. Let D represent the original full dataset
and D′ = D\Z. Without loss of generality, define

fD(θ) =
1

n

n∑
i=1

fzi(θ),

fD′(θ) =
1

n−m

n−m∑
i=1

fzi(θ),

such that we have

fD =
n−m

n
fD′(θ) +

1

n

n∑
i=n−m+1

fzi(θ),

fD′ =
n

n−m
(fD(θ)−

1

n

n∑
i=n−m+1

fzi(θ)).

Let {θt}Tt=0 represent the gradient descent iterates of the learning algorithm on fD, starting from θ0, and let {θ′t}Tt=0 be the
iterates of the learning algorithm on fD′ starting from the same θ0. Then we have

θ0 = θ′0, (8)
θt = θt−1 − η∇fD(θt−1), (9)
θ′t = θ′t−1 − η∇fD′(θ′t−1). (10)

Let {θ′′t }Kt=0 represent the gradient descent iterates of the unlearning algorithm starting at θ′′0 = θT−K . Finally, let
θ̃ = θ′′K + ξ denote the iterate with Gaussian noise added.

We first bound the distance between θt and θ′t as follows.

12

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Lemma B.2. Let {θt}Tt=0, {θ′t}Tt=0 be defined as in (8). Then

∥θt − θ′t∥ ≤ 2Gm

Ln
[(1 +

ηLn

n−m
)t − 1].

Proof. We have

∇fD′(θ) =
n

n−m
(∇fD(θ)−

1

n

n∑
i=n−m+1

∇fzi(θ)),

θ′t = θ′t−1 − η
n

n−m
(∇fD(θ

′
t−1)−

1

n

n∑
i=n−m+1

∇fzi(θ
′
t−1)).

So we have for ∆t = θt − θ′t,

∆t =∆t−1 − η∇fD(θt−1) + η
n

n−m
(∇fD(θ)−

1

n

n∑
i=n−m+1

∇fzi(θ
′
t−1)),

=∆t−1 − η∇fD(θt−1) + η
n

n−m
∇fD(θ

′
t−1)− η

1

n−m

n∑
i=n−m+1

∇fzi(θ
′
t−1),

=∆t−1 − η∇fD(θt−1) + η
n

n−m
∇fD(θt−1) + η

n

n−m
(∇fD(θ

′
t−1)−∇fD(θt−1))− η

1

n−m

n∑
i=n−m+1

∇fzi(θ
′
t−1),

=∆t−1 + η
m

n−m
∇fD(θt−1) + η

n

n−m
(∇fD(θ

′
t−1)−∇fD(θt−1))− η

1

n−m

n∑
i=n−m+1

∇fzi(θ
′
t−1).

After taking the absolute value of each side, we obtain by the triangle inequality

||∆t|| ≤ ||∆t−1||+ η
m

n−m
||∇fD(θt−1)||+ η

n

n−m
||∇fD(θ

′
t−1)−∇fD(θt−1)||+ η

1

n−m

n∑
i=n−m+1

||∇fzi(θ
′
t−1)||.

Since the gradient on each data sample is bounded by G, we have

||∆t|| ≤ ||∆t−1||+ η
m

n−m
G+ η

n

n−m
||∇fD(θ

′
t−1)−∇fD(θt−1)|| − η

1

n−m

n∑
i=n−m+1

G,

||∆t|| ≤ ||∆t−1||+ η
n

n−m
||∇fD(θ

′
t−1)−∇fD(θt−1)||+

2ηGm

n−m
.

By Lipschitz smoothness of the gradient, we have

||∆t|| ≤ ||∆t−1||+ η
n

n−m
L||θ′t−1 − θt−1||+

2ηGm

n−m
,

||∆t|| ≤ ||∆t−1||(1 +
ηLn

n−m
) +

2ηGm

n−m
.

Since we have ||∆0|| = 0, evaluating this recursive relationship yields for t > 0

||∆t|| ≤
2ηGm

n−m

t−1∑
i=0

(1 +
ηLn

n−m
)i

||∆t|| ≤
2ηGm

n−m

(1 + ηLn
n−m)t − 1
ηLn
n−m

||∆t|| ≤ 2Gm
(1 + ηLn

n−m)t − 1

Ln

13

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

This bound takes advantage of the difference between fD and fD′ as it decreases with large n, but it also grows exponentially
with the number of iterates.

Lemma B.3. Let {θ′′t }Kt=0 represent the gradient descent iterates on fD′ starting at θ′′0 = θT−K such that

θ′′t = θ′′t−1 − η∇fD′(θ′′t−1)

Then
||θ′T − θ′′K || ≤ ||θT−K − θ′T−K ||(1 + ηL)K

Proof. Let ∆′
t = θ′T−K+t − θ′′t such that ∆′

0 = ||θ′T−K − θ′′0 || and we bound it as follows

∆′
t = θ′T−K+t − θ′′t = θ′T−K+t−1 − η∇fD′(θ′T−K+t−1)− θ′′t−1 + η∇fD′(θ′′t−1)

= ∆′
t−1 − η∇fD′(θ′T−K+t−1) + η∇fD′(θ′′t−1)

||∆′
t|| ≤ ||∆′

t−1||+ η||∇fD′(θ′T−K+t−1)−∇fD′(θ′′t−1)||

By Lipschitz smoothness
||∆′

t|| ≤ ||∆′
t−1||+ Lη||θ′T−K+t−1 − θ′′t−1||

||∆′
t|| ≤ (1 + ηL)||∆′

t−1|| ≤ ||∆′
0||(1 + ηL)t

Returning to the algorithm, suppose the learning algorithm has T iterations and we backtrack for K iterations. Then the
difference between the output of the learning algorithm (without noise) on fD′ and the unlearning algorithm would be

||θ′T − θ′′K || ≤ ||∆T−K ||(1 + ηL)K ≤ 2mG

Ln
((1 +

ηLn

n−m
)T−K − 1)(1 + ηL)K

where the bound on the right hand side decreases monotonically as K increases from 0 to T , as shown by the following. Let

h(K) = ((1 +
ηLn

n−m
)T−K − 1)(1 + ηL)K .

Then the derivative is

h′(K) = (1 + ηL)K [((1 +
ηLn

n−m
)T−K − 1) log(1 + ηL)− (1 +

ηLn

n−m
)T−K log(1 +

ηLn

n−m
)],

we observe that h′(K) < 0 for K ∈ [0, T]. Therefore h(K) is decreasing.

Therefore by Theorem B.1, to achieve ϵ, δ-unlearning, we need to set the value of σ as follows

σ =
||θ′T − θ′′K ||

√
2 log(1.25/δ)

ϵ
=

2mG · h(K)
√

2 log(1.25/δ)

Lnϵ
.

Now we prove the utility guarantee. For nonconvex smooth functions, we know by standard analysis that for the gradient
descent iterates θ′′t , we have

η

2

K∑
t=0

||∇fD′(θ′′t)|| ≤
K∑
t=0

fD′(θ′′t)− fD′(θ′′t+1) = fD′(θ′′0)− fD′(θ′′K)

Now we consider the progress of the iterates θt on fD′(θ). By Lipschitz smoothness, we have

fD′(θt+1) ≤ fD′(θt) + ⟨∇fD′(θt),−η∇fD(θt)⟩+
L

2
||η∇fD(θt)||2

14

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

We have

∇fD(θt) =
n−m

n
∇fD′(θt) +

1

n

n∑
i=n−m+1

∇fzi(θt)

fD′(θt+1) ≤ fD′(θt)−η⟨∇fD′(θt),
n−m

n
∇fD′(θt)+

1

n

n∑
i=n−m+1

∇fzi(θt)⟩+
Lη2

2
||n−m

n
∇fD′(θt)+

1

n

n∑
i=n−m+1

∇fzi(θt)||2

≤ fD′(θt)−η
n−m

n
||∇fD′(θt)||2−η⟨∇fD′(θt),

1

n

n∑
i=n−m+1

∇fzi(θt)⟩+
Lη2

2
||n−m

n
∇fD′(θt)+

1

n

n∑
i=n−m+1

∇fzi(θt)||2

≤ fD′(θt)−η
n−m

n
||∇fD′(θt)||2−η⟨∇fD′(θt),

1

n

n∑
i=n−m+1

∇fzi(θt)⟩+Lη2||n−m

n
∇fD′(θt)||2+Lη2|| 1

n

n∑
i=n−m+1

∇fzi(θt)||2

≤ fD′(θt)−η
n−m

n
(1−Lη(n−m)

n
)||∇fD′(θt)||2−η⟨∇fD′(θt),

1

n

n∑
i=n−m+1

∇fzi(θt)⟩+Lη2
1

n

n∑
i=n−m+1

||∇fzi(θt)||2

≤ fD′(θt)− η
n−m

n
(1− Lη(n−m)

n
)||∇fD′(θt)||2 + η

G2m

n
+ Lη2

mG

n

Let the step size η be bounded such that η ≤ n
2(n−m)L , then we have

fD′(θt+1) ≤ fD′(θt)−
η(n−m)

2n
||∇fD′(θt)||2 +

ηG2m

n
+

Lη2Gm

n

Rearrange the terms to get

η(n−m)

2n
||∇fD′(θt)||2 ≤ fD′(θt)− fD′(θt+1) +

ηG2m

n
+

Lη2Gm

n

Sum from t = 0 to T −K − 1

η(n−m)

2n

T−K−1∑
t=0

||∇fD′(θt)||2 ≤ fD′(θ0)− fD′(θT−K) + (T −K − 1)(
ηG2m

n
+

Lη2Gm

n
)

T−K−1∑
t=0

||∇fD′(θt)||2 ≤ 2n

η(n−m)
(fD′(θ0)− fD′(θT−K) + (T −K − 1)(

ηG2m

n
+

Lη2Gm

n
))

T−K−1∑
t=0

||∇fD′(θt)||2 ≤ 2n

η(n−m)
(fD′(θ0)− fD′(θT−K)) + (T −K − 1)(

2G2m

n−m
+

2LηGm

n−m
)

From standard analysis of gradient descent on nonconvex functions, we know

η

K∑
t=0

||∇fD′(θ′′t)||2 ≤ fD′(θ′′0)− fD′(θ′′K)

K∑
t=0

||∇fD′(θ′′t)||2 ≤ 1

η
(fD′(θ′′0)− fD′(θ′′K))

Summing the equations yields
T−K−1∑

t=0

||∇fD′(θt)||2 +
K∑
t=0

||∇fD′(θ′′t)||2

≤ 2n

η(n−m)
(fD′(θ0)− fD′(θT−K)) + (T −K − 1)(

2G2m

n−m
+

2LηGm

n−m
) +

1

η
(fD′(θ′′0)− fD′(θ′′K))

15

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

≤ 2n

η(n−m)
(fD′(θ0)− fD′(θ′′K)) + (T −K − 1)(

2G2m

n−m
+

2LηGm

n−m
)

We can expand ||∇fD′(θ′′K)||2 as follows

||∇fD′(θ′′K)||2 = ||∇fD′(θ̃′′)||2 + ||∇fD′(θ′′K)||2 − ||∇fD′(θ̃′′)||2

= ||∇fD′(θ̃′′)||2 + 2∇fD′(θ̃′′)T (∇fD′(θ′′K)−∇fD′(θ̃′′)) + ||∇fD′(θ′′K)−∇fD′(θ̃′′)||2

= ||∇fD′(θ̃′′)||2 + 2∇fD′(θ̃′′)T ξ + ||ξ||2

So we have

1

T

[T−K−1∑
t=0

||∇fD′(θt)||2 +
K−1∑
t=0

||∇fD′(θ′′t)||2 + E[||∇fD′(θ̃′′)||2]
]
≤2n(fD′(θ0)− fD′(θ′′K))

Tη(n−m)

+
T −K − 1

T
(
2G2m

n−m
+

2LηGm

n−m
)

B.1. Proof of Corollary 3.5

As before, we first consider the gradient descent iterates on fD′ . For µ-PL and smooth functions, we know that for the
iterates θ′′t , we have (Karimi et al., 2016)

fD′(θ′′t)− f∗
D′ ≤ (1− ηµ)t(fD′(θ′′0)− f∗

D′)

Now we track the progress of the iterates θt on fD′ . By Lipschitz smoothness and the above analysis, we have

fD′(θt+1)− fD′(θt) ≤ ⟨∇fD′(θt),−η∇fD(θt)⟩+
L

2
||η∇fD(θt)||2

fD′(θt+1)− fD′(θt) ≤ −η
n−m

n
(1− Lη(n−m)

n
)||∇fD′(θt)||2 + η

G2m

n
+ Lη2

mG

n

Let the step size η be bounded such that η ≤ n
2(n−m)L , then we have

fD′(θt+1)− fD′(θt) ≤ −η(n−m)

2n
||∇fD′(θt)||2 +

ηG2m

n
+

Lη2Gm

n

By the PL inequality, we have

fD′(θt+1)− fD′(θt) ≤ −ηµ(n−m)

n
(fD′(θt)− f∗

D′) +
ηG2m

n
+

Lη2Gm

n

fD′(θt+1)− f∗
D′ ≤ (1− ηµ(n−m)

n
)(fD′(θt)− f∗

D′) +
ηG2m

n
+

Lη2Gm

n

We evaluate this recursive relationship to obtain

fD′(θt+1)− f∗
D′ ≤ (1− ηµ(n−m)

n
)t+1(fD′(θ0)− f∗

D′) +
1

n
(ηG2m+ Lη2Gm)

t∑
i=0

(1− ηµ(n−m)

n
)i

fD′(θt+1)− f∗
D′ ≤ (1− ηµ(n−m)

n
)t+1(fD′(θ0)− f∗

D′) +
1

n
(ηG2m+ Lη2Gm)

t∑
i=0

(1− ηµ(n−m)

n
)i

≤ (1− ηµ(n−m)

n
)t+1(fD′(θ0)− f∗

D′) +
1

n
(ηG2m+ Lη2Gm)

n

ηµ(n−m)

fD′(θt+1)− f∗
D′ ≤ (1− ηµ(n−m)

n
)t+1(fD′(θ0)− f∗

D′) +
G2m+ LηGm

µ(n−m)

16

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

fD′(θ′′0)− f∗
D′ = fD′(θT−K)− f∗

D′ ≤ (1− ηµ(n−m)

n
)T−K(fD′(θ0)− f∗

D′) +
G2m+ LηGm

µ(n−m)

fD′(θ′′K)− f∗
D′ ≤ (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′) + (1− ηµ)K
G2m+ LηGm

µ(n−m)
(11)

By Lipschitz smoothness, we have

fD′(θ̃′′)− f∗
D′ ≤ fD′(θ̃′′)− fD′(θ′′K) + (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′) + (1− ηµ)K
G2m+ LηGm

µ(n−m)

≤ L||θ̃′′ − θ′′K ||+ (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′) + (1− ηµ)K
G2m+ LηGm

µ(n−m)

= L||ξ||+ (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′) + (1− ηµ)K
G2m+ LηGm

µ(n−m)
(12)

If we take the expectation on both sides with respect to the noise added at the end of the algorithm U , we have

E[fD′(θ̃′′)]− f∗
D′ ≤ L

√
dσ + (1− ηµ(n−m)

n
)T−K(1− ηµ)K(fD′(θ0)− f∗

D′) + (1− ηµ)K
G2m+ LηGm

µ(n−m)

B.2. Proof of Corollary 3.6

Bounds on generalization can be derived using seminal results in algorithmic stability (Elisseeff et al., 2005). Prior work
on the generalization ability of unlearning algorithms focus on the strongly convex case (Sekhari et al., 2021; Qiao et al.,
2024; Liu et al., 2023; Ullah et al., 2021), which feature excess risk bounds for the empirical risk minimizer when the loss is
strongly convex (Shalev-Shwartz et al., 2009). In contrast, algorithms on PL objective functions can at best satisfy pointwise
(Charles & Papailiopoulos, 2018) or on-average (Lei & Ying, 2021) stability. The following result derives from Theorem 1
of (Lei & Ying, 2021). We utilize the fact that for w∗ ∈ argminθ∈Θ F (θ), we have E[f∗

D′] ≤ E[fD′(w∗)] = F (w∗) = F ∗,
and we also slightly modify the result to include the stronger bounded gradient assumption used in our work.
Lemma B.4. (Lei & Ying, 2021) For F defined in (7) and θ as the output of an algorithm dependent on D′, we have

E[F (θ)− F ∗] ≤ 2G2

(n−m)µ
+

L

2µ
E[fD′(θ)− f∗

D′].

We obtain the result by substituting in (11).

B.3. Proof of Corollary 3.2

We want to determine the value of K required to maintain a privacy level ϵ for a chosen level of noise σ. From (3) we have

ϵ =
h(K)2mG

√
2 log(1.25/δ)

σLn

Although this does not have an exact explicit solution for K(ϵ), we can bound h(K) as follows

h(K) ≤ ((1 +
ηLn

n−m
)T−K − 1)(1 +

ηLn

n−m
)K = (1 +

ηLn

n−m
)T − (1 +

ηLn

n−m
)K

Then we have

ϵ ≤
2mG

√
2 log(1.25/δ)

σLn
((1 +

ηLn

n−m
)T − (1 +

ηLn

n−m
)K)

(1 +
ηLn

n−m
)K ≤ (1 +

ηLn

n−m
)T − σLnϵ

2mG
√

2 log(1.25/δ)

K ≤
log

(
(1 + ηLn

n−m)T − σLnϵ

2mG
√

2 log(1.25/δ)

)
log(1 + ηLn

n−m)

We therefore obtain a close upper bound on K(ϵ) for fixed σ. In practice we can choose K equal to this bound to ensure
the privacy guarantee is achieved. We show in Figure 1c that this bound is close to tight for 0 < ϵ ≤ 1 and real-world
parameters.

17

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

C. Additional Discussion of Related Work
To review, our algorithm is a first-order, black-box algorithm that provides (ϵ, δ) unlearning while also maintaining
performance and computational efficiency. In this section, we provide an in-depth comparison our algorithmic differences
with existing convex and nonconvex certified unlearning algorithms (Table 3). These algorithms all involve injecting some
(Gaussian) noise to render the algorithm outputs probabilistically indistinguishable, whether it is added to the objective
function, to the final model weights, or at each step of the training process.

Algorithm Standard Deviation of Injected Gaussian Noise Bounded ∥θ∥ < R?

Newton Step (Guo et al.,
2019)

σ =
4LG2

√
2 log(1.5/δ)

λ2(n−1)ϵ No

Descent-to-delete (D2D)
(Neel et al., 2021)

σ =
4
√
2M(L−λ

L+λ)
K

λn(1− (L−λ
L+λ)

K)(
√

log(1/δ) + ϵ−
√
log(1/δ))

No

Langevin Unlearning (Chien
et al., 2024a)

No closed-form solution for σ in terms of ϵ, δ Yes

Constrained Newton Step
(CNS) (Zhang et al., 2024) σ =

(
2R(PR+λ)
λ+λmin

+
32
√

log(d/ρ)

λ+λmin
+ 1

8

)
LR

√
2 log(1.25/δ)

ϵ

Yes

Hessian-Free unlearning
(HF) (Qiao et al., 2024) σ = 2ηG

√
2 log(1.25/δ)

ϵ
ζ−U
T No

Our Work (R2D) σ =
2mG · h(K)

√
2 log(1.25/δ)

Lnϵ
No

Table 3. Comparison of certified unlearning algorithms and their noise guarantees. We denote K as the number of unlearning iterates,
λ as the regularization constant or strongly convex parameter, M as the Lipschitz continuity parameter, and d as the model parameter
dimension. In addition, R is the parameter norm constraint. For (Zhang et al., 2024), P represents the Lipschitz constant of the Hessian,
λmin represents the minimum eigenvalue of the Hessian, and ρ represents a probability less than 1. For (Qiao et al., 2024), ζ−U

T is
a constant dependent on the upper and lower bounds of the Hessian spectrum that grows with the number of learning iterates T for
nonconvex objective functions.

We are interested in comparing the noise-unlearning tradeoff of each of these algorithms. The second column of Table 3 lists
the standard deviation σ in terms of ϵ, δ, and other problem parameters for the other certified unlearning algorithms. Our
result is analogous to that of (Neel et al., 2021), due to algorithmic similarities such as weight perturbation at the end of
training. However, the required noise in (Neel et al., 2021) decays exponentially with unlearning iterations, while our noise
decreases more slowly with increasing K for our algorithm. This difference is because (Neel et al., 2021) considers strongly
convex functions, where trajectories are attracted to a global minimum.

The third column of Table 3 highlights an additional advantage our algorithm has over existing approaches. Our theoretical
guarantees do not require a uniform bound on the model weights ||θ|| ≤ R, nor does σ depend on R, in contrast to (Chien
et al., 2024a) and (Zhang et al., 2024). Both (Zhang et al., 2024; Chien et al., 2024a) require a bounded feasible parameter
set, which they leverage to provide a loose bound on the distance between the retraining and unlearning outputs dependent
on the parameter set radius R. However, this yields excessive noise requirements, with the standard deviation σ scaling
linearly or polynomially with R. For example, a similar scaling with R can be achieved by a random selection of feasible
weights. Suppose we have an arbitrary learning algorithm that outputs some model weights θ perturbed by Gaussian noise
ξ ∼ N (0, σ2Id) and an arbitrary unlearning algorithm that also outputs some other model weights θ′ perturbed by Gaussian
noise ξ′ ∼ N (0, σ2Id). Then we have

θ̃ = θ + ξ

θ̃′ = θ′ + ξ′

18

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

||θ − θ′|| ≤ 2R.

Then by Theorem B.1, our unlearning algorithm is (ϵ, δ) unlearning as long as

σ ≥
2R

√
2 log(1.25/δ)

ϵ
.

In conclusion, an algorithm that outputs arbitrary weights in the feasible set can obtain unlearning with σ = O(R), which is
of the same order as the dependencies in (Chien et al., 2024a) and (Zhang et al., 2024).

Our work shares similarities with (Chien et al., 2024a), a first-order white-box algorithm that uses noisy projected gradient
descent to achieve certified unlearning, leveraging the existence and uniqueness of the limiting distribution of the training
process as well as the boundedness of the projection set. Their guarantee shows that the privacy loss ϵ decays exponentially
with the number of unlearning iterates. However, σ, the noise added at each step, is defined implicitly with no closed-
form solution. We can only assert that for a fixed number of iterations K, σ must be at least O(R) to obtain ϵ = O(1).
Because σ cannot be defined explicitly, it is difficult to implement this algorithm for a desired ϵ. For example, when
performing experiments for the strongly convex setting, which is a simpler mathematical expression, they require an
additional subroutine to find the smallest σ that satisfies the target ϵ. As for the nonconvex setting, they state that “the
non-convex unlearning bound... currently is not tight enough to be applied in practice due to its exponential dependence on
various hyperparameters.”

D. Experimental Details and Additional Results
Code is open-sourced at the following anonymized GitHub link: https://github.com/anonymous-1234567/r2d.

D.1. Implementation Details

Model architecture. Because our analysis requires smooth functions, we replace ReLU activations with SmeLU activations
(Shamir et al., 2020). We also do not use Batch Normalization layers. These steps may affect model performance but
improve the soundness of our experiments by allowing estimation of the smoothness constant L.

Gradient bound estimation. To estimate the gradient bound G, we compute the norm of each minibatch gradient at each
step of the training process, and take the maximum of these values as the estimate.

Lipschitz constant estimation. To estimate the Lipschitz constant L, we perturb the model weights after training by
Gaussian noise with σ = 0.01, and we estimate the Lipschitz constant by computing

L̂ =
||θ1 − θ2||

||∇f(θ1)−∇f(θ2)||
.

We sample 400 perturbed weight samples and take the maximum of all the estimates L̂ to be our Lipschitz constant.

Experiment Parameter eICU and MLP Lacuna-100 and ResNet-18
Size of training dataset n 94449 32000
Number of users 119282 100
Percent data unlearned ∼ 1% ∼ 2%
Number of model parameters d 2172034 11160258
Batch size 512 256
L 0.14394 5.6530
G 1.70994 9.481617
η 0.0004638 1.966e-05
Number of training epochs 52 82

Table 4. Experiment parameters for the eICU and Lacuna-100 datasets.

Model selection. To simulate real-world practices, we perform model selection during the initial training on the full dataset
by training until the validation loss converges, and then selecting the model parameters with the lowest validation loss. We
treat the selected iteration as the final training iterate. For consistency between experiments under different seeds, we only

19

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

perform model selection and parameter estimation on the experiments for seed=1 and utilize the resulting estimated values
for all other experiments.

Sensitivity of MIA tests. We conduct MIAs to assess if information about the unlearned data is retained in the model
weights and reflected in the model outputs. Prior works typically perform the attack comparing the unlearned dataset and
the test dataset, the latter of which represents data previously unseen by the model. However, in our setting, the model
may perform well on users present in both the training data and the test data, while performing poorly on the users that are
unlearned. It is therefore more appropriate membership inference attack on out-of-distribution (OOD) data that contains
data from users absent from the training data.

MIAs are highly sensitive to distributional differences due to the non-uniform sampling of the unlearned data and the
performance of the model. For example, for large σ, the perturbed model may perform poorly by classifying all data in
a single class. If the class distribution in the unlearned dataset is different from the class distribution in the non-training
dataset, the MIA may succeed by simply identifying the majority class in the unlearned dataset. To counter this effect, we
ensure that the OOD dataset used for MIA and the unlearned dataset have the same class distribution. Overall, extra caution
is necessary when interpreting MIA results as an unlearning metric, especially when the original model is not extremely
accurate or when the unlearned and test datasets are not identically distributed.

Unlearning metrics. Many prior works solely use the error on the unlearned dataset as an unlearning metric, theorizing that
the model should perform poorly on data it has never seen before. However, this is questionable in our context. For example,
for Lacuna-100, unlearning a user’s facial data does not preclude the model from correctly classifying their gender later,
especially if the user’s photos are clear and easily identifiable. Moreover, since the unlearned data contains a small subset of
the users in the training data, it is also likely to have lower variance. As a result, the unlearned model may even perform
better on the unlearned data than on the training data. Instead of comparing error on the unlearned, training, and test set, we
consider the unlearned error before and after unlearning as in Figure 1e.

Baseline implementations. We include our own implementations of each baseline method in the code. To implement
the baselines, we use our estimated values of L and G when applicable, and we change the step size and batch size so
that the learning algorithms are sufficiently converged for our problems. For other parameters, such as minimum Hessian
eigenvalue or Hessian Lipschitz constant, we use the default values given in the original works. We trained each unique
learning algorithm on each dataset until convergence before adding noise. Table 5 reports the noiseless test error of each
algorithm, showing that they achieve comparable performance prior to unlearning.

Learning Algorithm eICU Test Error Lacuna-100 Test Error
Rewind-to-Delete (R2D) 0.3055 0.0846
Hessian-Free (HF) 0.3125 0.0846
Constrained Newton Step (CNS) 0.2895 0.0462

Table 5. Noiseless test error of original trained models before unlearning.

Experiment Parameter eICU Lacuna-100
Batch size 512 256
η0 0.1 0.1
Step size decay 0.995 0.995
Gradient norm clipping 5 5
Number of training epochs 15 25

Experiment Parameter eICU Lacuna-100
Batch size 128 128
η 0.001 0.001
Weight decay 0.0005 0.0005
Parameter norm constraint R 10 21
Number of training epochs 30 30

Table 6. Experiment parameters of HF (left) and CNS (right) for the eICU and Lacuna-100 datasets.

Table 6 shows some of the parameters used for implementing the baselines. Additional information can be found in the at-
tached code. The implementation of (Zhang et al., 2024) is based on code from https://github.com/zhangbinchi/certified-deep-
unlearning, and the implementation of (Qiao et al., 2024) is based on code from https://github.com/Anonymous202401/If-
Recollecting-were-Forgetting.

Additional details. All experiments were run on an NVIDIA GeForce RTX 4060 GPU (8 GB) with PyTorch 2.4.1 and
CUDA 12.1, except for the HF experiments and the time experiments in Table 2 and Table 7, which were run on an NVIDIA

20

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

RTX A6000 GPU (48 GB) with PyTorch 2.5.1 and CUDA 12.4. We considered the seeds [0, 1, 2, 3, 4] in all experiments
except the baseline comparisons, for which we only use seed 1 due to computational constraints. In addition, we use the
same Gaussian noise vector for models under the same seed, rescaled to different standard deviations. We found that using
unique noise for every hyperparameter combination resulted in similar but noisier trends. When initialized with the same
seed, the torch.randn method outputs the same noise vector rescaled by the standard deviation. The pre-unlearning
noise uses a different seed.

D.2. Additional Baseline Comparisons

Because we desire machine unlearning algorithms that achieve a computational advantage over training from scratch, it is
useful to compare the amount of time required for learning and unlearning for different algorithms. The results in Table 2
and 7 demonstrate that R2D unlearning achieves a competitive advantage compared to HF and CNS. As expected based on
its straightforward algorithmic structure, the unlearning time of R2D is proportional to the number of rewind iterations.

These results also depend on our implementation of the learning algorithms of HF and CNS. For HF, we note in Table 6 that
we use fewer training iterations for HF compared to R2D. Despite this, HF requires 104 times more compute time during
learning, highlighting the benefits of black-box algorithms that dovetail with standard training practices and do not require
complicated procedures during training. Similarly, CNS also uses fewer training iterations than R2D to converge to a model
with competitive performance; as shown in Table 5, the original model trained with CNS achieves a lower error, likely
due to the use of advanced optimization techniques like momentum and regularization. However, because CNS unlearning
requires an expensive second-order operation independent of the training process, it only displays a moderate computational
advantage on the Lacuna-100 dataset and no advantage on the eICU dataset. In contrast, by construction R2D unlearning
will always require less computation than learning, demonstrating the benefits of a cheap first-order approach.

Algorithm Learning Time Unlearning Time
Rewind-to-Delete (R2D), 22% 194.33 sec 41.50 sec
Rewind-to-Delete (R2D), 41% 194.33 sec 81.53 sec
Hessian-Free (HF) 5.65 hours 0.01 sec
Constrained Newton Step (CNS) 266.0 sec 293.6 sec

Table 7. Comparison of computation time of algorithms for the eICU dataset, with 22% or 41% training iterations for R2D. These results
and Table 2 were achieved on an NVIDIA RTX A6000 GPU (48 GB).

Tables 8 and 9 show the unlearned, test, and train errors for the baseline algorithms using ϵ = 40 and δ = 0.1. Both (Zhang
et al., 2024) and (Qiao et al., 2024) consider a weaker definition of certified unlearning, introduced in (Sekhari et al., 2021),
that only considers indistinguishability with respect to the output of the unlearning algorithms, with or without certain data
samples, as opposed to the definition used in our work, which considers indistinguishability with respect to the learning
algorithm and the unlearning algorithm. As a result, neither (Zhang et al., 2024) nor (Qiao et al., 2024) require adding noise
during the initial learning process. Figure 2 displays data for other values of ϵ.

Algorithm Unlearned Error Test Error Train Error Original Model Test Error MIA Score

R2D, 22 % 0.5747 0.5655 0.5611 0.3292 0.5328
R2D, 41% 0.5060 0.4675 0.4664 0.3193 0.5358
R2D, 61% 0.4111 0.3719 0.3735 0.3119 0.5280
R2D, 80% 0.3337 0.3222 0.3197 0.3081 0.5075
R2D, 100% 0.3043 0.3055 0.3049 0.3055 0.5045
HF 0.3195 0.3125 0.3104 0.3125 0.5127
CNS 0.5649 0.5588 0.5581 0.2895 0.4693

Table 8. eICU baseline method comparisons for ϵ = 40, δ = 0.1.

21

Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions

Algorithm Unlearned Error Test Error Train Error Original Model Test Error MIA Score

R2D, 26% 0.3425 0.4045 0.4059 0.4057 0.5730
R2D, 51% 0.2036 0.2652 0.2671 0.2680 0.5732
R2D, 75% 0.1422 0.1433 0.1313 0.1400 0.5652
R2D, 100% 0.0969 0.0912 0.0647 0.0863 0.5958
HF 0.0452 0.0846 0.0660 0.0846 0.5523
CNS 0.4976 0.5000 0.5000 0.0462 0.5949

Table 9. Lacuna-100 baseline method comparisons for ϵ = 40, δ = 0.1.

D.3. Noiseless Version

Although certified unlearning provides a precise mathematical notion of unlearning, it requires adding a large amount of
noise which can degrade model performance. As shown in Figure 3, the noiseless version of R2D may also be capable of
unlearning in practice. The MIA scores decrease as K increases, suggesting that more information is unlearned when more
rewinding occurs, even without noise disguising the output of the unlearning algorithm. A potential future direction of this
research is empirically comparing this algorithm and other non-certified unlearning algorithms under more sophisticated
MIAs.

Figure 3. MIA scores after noiseless N2D unlearning. These results are averaged over 5 seeds.

22

